
page 13/24/06 CSE 30341: Operating Systems Principles

Chapter 11: File System Implementation

 File structure
 Logical storage unit
 Collection of related information

 File system resides on secondary storage (such
as disks)

1. Boot control block - information needed to boot
2. Volume control block - information about

volume/partitions (# blocks, size of blocks, free
block count, free block pointers)

3. Directory structure (inode)
4. Per file control blocks
 File system organized into layers

page 23/24/06 CSE 30341: Operating Systems Principles

Layered File System

page 33/24/06 CSE 30341: Operating Systems Principles

A Typical File Control Block

File control block – storage structure consisting of
information about a file

page 43/24/06 CSE 30341: Operating Systems Principles

In-Memory File System Structures

page 53/24/06 CSE 30341: Operating Systems Principles

Virtual File Systems

There are many different file systems available on
any operating systems
 Windows: NTFS, FAT, FAT32
 Linux: ext2/ext3, ufs, vfat, ramfs, tmpfs, reiserfs, xfs ...

Virtual File Systems (VFS) provide an object-
oriented way of implementing file systems

VFS allows the same system call interface (the
API) to be used for different types of file systems

The API is to the VFS interface, rather than any
specific type of file system

page 63/24/06 CSE 30341: Operating Systems Principles

Schematic View of Virtual File System

page 73/24/06 CSE 30341: Operating Systems Principles

Directory Implementation

Directories hold information about files
Linear list of file names with pointer to the data

blocks.
 simple to program
 time-consuming to execute

Hash Table – linear list with hash data structure.
 decreases directory search time
 collisions – situations where two file names hash to the

same location
 fixed size

page 83/24/06 CSE 30341: Operating Systems Principles

Allocation Methods

An allocation method refers to how disk blocks are
allocated for files:

Contiguous allocation

Linked allocation

 Indexed allocation

page 93/24/06 CSE 30341: Operating Systems Principles

Contiguous Allocation

Each file occupies a set of contiguous blocks
on the disk

Simple – only starting location (block #) and
length (number of blocks) are required

Random access

Wasteful of space (dynamic storage-
allocation problem)

Files cannot grow

page 103/24/06 CSE 30341: Operating Systems Principles

Contiguous Allocation of Disk Space

page 113/24/06 CSE 30341: Operating Systems Principles

Extent-Based Systems

Many newer file systems (I.e. Veritas File System)
use a modified contiguous allocation scheme

Extent-based file systems allocate disk blocks in
extents

An extent is a contiguous block of disks
 Extents are allocated for file allocation
 A file consists of one or more extents.

page 123/24/06 CSE 30341: Operating Systems Principles

Linked Allocation

 Each file is a linked list of disk blocks: blocks may be
scattered anywhere on the disk.

 Simple – need only starting address
 Free-space management system – no waste of space
 No random access

pointerblock =

page 133/24/06 CSE 30341: Operating Systems Principles

Linked Allocation

page 143/24/06 CSE 30341: Operating Systems Principles

File-Allocation Table (DOS FAT)

page 153/24/06 CSE 30341: Operating Systems Principles

Indexed Allocation

Brings all pointers together into the index block.
Logical view.

index table

page 163/24/06 CSE 30341: Operating Systems Principles

Example of Indexed Allocation

page 173/24/06 CSE 30341: Operating Systems Principles

Indexed Allocation (Cont.)

Need index table
Random access
Dynamic access without external fragmentation,

but have overhead of index block.
Mapping from logical to physical in a file of

maximum size of 256K words and block size of 512
words. We need only 1 block for index table.

page 183/24/06 CSE 30341: Operating Systems Principles

Indexed Allocation – Mapping (Cont.)

M

outer-index

index table file

page 193/24/06 CSE 30341: Operating Systems Principles

Combined Scheme: UNIX (4K bytes per block)

