-I Allocation of Frames

» How should the OS distribute the frames among
the various processes?

» Each process needs minimum number of pages -
at least the minimum number of pages required for
a single assembly instruction to complete

» Example: IBM 370 — 6 pages to handle SS MOVE
Instruction:
B instruction is 6 bytes, might span 2 pages
B 2 pages to handle from
B 2 pages to handle to

» Two major allocation schemes
m fixed allocation
B priority allocation

I 3/9/06 CSE 30341: Operating Systems Principles page 1



Fixed Allocation

» Equal allocation — For example, if there are 100
frames and 5 processes, give each process 20

frames. s; = size of process p;
S = ESI'
m = total number of frames

: S;
— a; = allocation for p; = §>< m

- Proportional allocation — Allocate according to the

size of process m 64

Si =1O
s, =127
10

8= x64~5
137

127

a, =" x64~59
137

CSE 30341: Operating Systems Principles page 2



Priority Allocation

» Use a proportional allocation scheme using
priorities rather than size

» If process P; generates a page fault,
B select for replacement one of its frames

B select for replacement a frame from a process
with lower priority number

CSE 30341: Operating Systems Principles page 3



-I Global vs. Local Allocation

» Global replacement — process selects a
replacement frame from the set of all frames; one
process can take a frame from another

W Itis possible for processes to suffer page faults through
no fault of theirs

B However, improves system throughput

» Local replacement — each process selects from
only its own set of allocated frames
B May not use free space in the system

I 3/9/06 CSE 30341: Operating Systems Principles page 4



-I Thrashing

» If a process does not have “enough” pages, the
page-fault rate is very high. This leads to:
m low CPU utilization

B operating system thinks that it needs to increase the
degree of multiprogramming because of low cpu
utilization

B another process added to the system

» Thrashing = a process is busy swapping pages in
and out

I 3/9/06 CSE 30341: Operating Systems Principles page 5



Thrashing (Cont.)

CPU utilization

| thrashing

degree of multiprogramming

CSE 30341: Operating Systems Principles

page 6



Demand Paging and Thrashing

» Why does demand paging work?
Locality model

B Process migrates from one locality to another
B Localities may overlap

computations;

» Why does thrashing occur?
> size of locality > total memory size

I 3/9/06 CSE 30341: Operating Systems Principles page 7



Locality In A I\/Iemory Reference Pattern

memory address

page numbers

34 ‘I‘Illl i ’ m it
C e J‘Hlllllﬂ HlHI“' e O R L G L L
- l
l
32 : T i i|’l| s \‘;f‘ T |]7 .l.-"'w “.W" e
L e ’ H ( ! | | |
I]]|I‘“'| L ! '\':‘ .|'n{tl‘||!'l%| 'H lLu':pLI ”I pJ
i IR
i “ | ‘ i .l | ttl ‘l ” ‘Ill 'l[ “\! ‘“I 'l " |" |
20 s ii.WJl 1Ii II H '-IT%T‘ ' Il. ||I 5 - —
HlMll‘\ m“lll Hﬂw \“I“HH'\ ‘ “ mlluulH]luI||||||||lnmu ull"llll[! |I|\-
28
26 |-l i
rl Hl J ol |
. i . —
o Ml ety &s!!:Jeigurm,...' - il'iil h“ I
. !\nlw Iull ...le.‘“i..l.t L I l
-
LA ! K
| 'Hll“ [n'll”hlm [[Hnullllllww HIIII”“ “‘ I|‘ |"“”H HHII"H mn " HM'M"W“M I
Sl AL l
il Il |\ e ‘
20 | ' o | I1HI fl |
“ : "I||l‘””'"'”| il l'| l w1 llI ! Iilll ‘\ ”|" |
W' ) w [T " ll
w] ‘|“||||||'H“|‘|IHLIHH>I||I1IH\I|IHIH|H|N|!||1u|| |mmum'|||n||fx\\\mli||||||f'|\|\"Hilll'l”lf““‘l".'ffl”' ‘U'I'“l*”‘
execution time ——




- Working-Set Model

» A = working-set window = a fixed number of
page references
Example: 10,000 instruction

» WSS, (working set of Process P)) =
total number of pages referenced in the most
recent A (varies in time)
| if A too small will not encompass entire locality
| if A too large will encompass several localities
m if A = = will encompass entire program

» D =% WSS, = total demand frames
» if D> m = Thrashing

» Policy if D > m, then suspend one of the
processes

I 3/9/06 CSE 30341: Operating Systems Principles page 9



Working-set model

page reference table
...2615777751623412344434344413234443444...

R S

t t
1 2
WS(t,) = {1,2,5,6,7} WS(t,) = {3,4)

CSE 30341: Operating Systems Principles page 10



Keeping Track of the Working Set

» Approximate with interval timer + a reference bit
» Example: A = 10,000

B Timer interrupts after every 5000 time units
B Keep in memory 2 bits for each page

m Whenever a timer interrupts copy and sets the values of
all reference bits to O

m If one of the bits in memory = 1 = page in working set
» Why is this not completely accurate?

» Improvement = 10 bits and interrupt every 1000
time units

CSE 30341: Operating Systems Principles page 11



Page-Fault Frequency Scheme

» Establish “acceptable” page-fault rate
m [f actual rate too low, process loses frame
B [f actual rate too high, process gains frame

increase number
of frames

upper bound

page-fault rate

lower bound

decrease number
of frames

number of frames

3/9/06 CSE 30341: Operating Systems Principles page 12




Other Issues -- Prepaging

» Prepaging
B To reduce the large number of page faults that occurs at
process startup

B Prepage all or some of the pages a process will need,
before they are referenced

m But if prepaged pages are unused, I/O and memory was
wasted

B Assume s pages are prepaged and a of the pages is used

® |s cost of s * a save pages faults > or < than the cost of

prepaging
S *(1- a) unnecessary pages?

® a near zero = prepaging loses

3/9/06 CSE 30341: Operating Systems Principles page 13




Other Issues — Page Size

» Page size selection must take into
consideration:

B fragmentation

m table size

m |/O overhead

B locality

3/9/06 CSE 30341: Operating Systems Principles page 14



-I Other Issues — TLB Reach

» TLB Reach - The amount of memory accessible
from the TLB

» TLB Reach = (TLB Size) X (Page Size)

» ldeally, the working set of each process is stored in
the TLB. Otherwise there is a high degree of page
faults.

» Increase the Page Size. This may lead to an
increase in fragmentation as not all applications
require a large page size

» Provide Multiple Page Sizes. This allows

applications that require larger page sizes the

opportunity to use them without an increase in
fragmentation.

3/9/06 CSE 30341: Operating Systems Principles page 15




-I Other Issues — Program Structure

» Program structure
m Int[128,128] data;
m Each row is stored in one page
m Program 1

for (j = 0; ] <128; j++)
for (i = 0; i < 128; i++)
datalij] = O:

128 x 128 = 16,384 page faults
B Program 2
for (i=0;i<128; i++)
for (j =0; )< 128; j++)
datali,j] = O;

128 page faults

3/9/06 CSE 30341: Operating Systems Principles page 16



| v

» Memory hierarchy:
B Speed: L1, L2, L3 caches, main memory, disk etc.
m Cost: disk, main memory, L3, L2, L1 etc.

» achieve good speed by moving “interesting”

objects to higher cache levels while moving
“uninteresting” objects to lower cache levels

» Hardware provides reference bit, modify bit, page
access counters, page table validity bits

» OS sets them appropriately such that it will be
notified via page fault
m OS provides policies
m Hardware provides mechanisms

» Implement VM, COW etc. that are tuned to
observed workloads

3/9/06 CSE 30341: Operating Systems Principles page 17



