
page 13/9/06 CSE 30341: Operating Systems Principles

Allocation of Frames

How should the OS distribute the frames among
the various processes?

Each process needs minimum number of pages -
at least the minimum number of pages required for
a single assembly instruction to complete

Example: IBM 370 – 6 pages to handle SS MOVE
instruction:
 instruction is 6 bytes, might span 2 pages
 2 pages to handle from
 2 pages to handle to

Two major allocation schemes
 fixed allocation
 priority allocation

page 23/9/06 CSE 30341: Operating Systems Principles

Fixed Allocation
Equal allocation – For example, if there are 100

frames and 5 processes, give each process 20
frames.

Proportional allocation – Allocate according to the
size of process

m
S

s
pa

m

sS

ps

i
ii

i

ii

!==

=

"=

=

 for allocation

frames of number total

 process of size

5964
137

127

564
137

10

127

10

64

2

1

2

!"=

!"=

=

=

=

a

a

s

s

m

i

page 33/9/06 CSE 30341: Operating Systems Principles

Priority Allocation

Use a proportional allocation scheme using
priorities rather than size

 If process Pi generates a page fault,
 select for replacement one of its frames
 select for replacement a frame from a process

with lower priority number

page 43/9/06 CSE 30341: Operating Systems Principles

Global vs. Local Allocation

Global replacement – process selects a
replacement frame from the set of all frames; one
process can take a frame from another
 It is possible for processes to suffer page faults through

no fault of theirs
 However, improves system throughput

Local replacement – each process selects from
only its own set of allocated frames
 May not use free space in the system

page 53/9/06 CSE 30341: Operating Systems Principles

Thrashing

 If a process does not have “enough” pages, the
page-fault rate is very high. This leads to:
 low CPU utilization
 operating system thinks that it needs to increase the

degree of multiprogramming because of low cpu
utilization

 another process added to the system

Thrashing ≡ a process is busy swapping pages in
and out

page 63/9/06 CSE 30341: Operating Systems Principles

Thrashing (Cont.)

page 73/9/06 CSE 30341: Operating Systems Principles

Demand Paging and Thrashing

 Why does demand paging work?
Locality model
 Process migrates from one locality to another
 Localities may overlap
 E.g.
for (……) {

computations;
}
for (…..) {

computations;
}

 Why does thrashing occur?
Σ size of locality > total memory size

page 83/9/06 CSE 30341: Operating Systems Principles

Locality In A Memory-Reference Pattern

page 93/9/06 CSE 30341: Operating Systems Principles

Working-Set Model

Δ ≡ working-set window ≡ a fixed number of
page references
Example: 10,000 instruction

WSSi (working set of Process Pi) =
total number of pages referenced in the most
recent Δ (varies in time)
 if Δ too small will not encompass entire locality
 if Δ too large will encompass several localities
 if Δ = ∞ ⇒ will encompass entire program

D = Σ WSSi ≡ total demand frames
 if D > m ⇒ Thrashing
Policy if D > m, then suspend one of the

processes

page 103/9/06 CSE 30341: Operating Systems Principles

Working-set model

page 113/9/06 CSE 30341: Operating Systems Principles

Keeping Track of the Working Set

Approximate with interval timer + a reference bit
Example: Δ = 10,000

 Timer interrupts after every 5000 time units
 Keep in memory 2 bits for each page
 Whenever a timer interrupts copy and sets the values of

all reference bits to 0
 If one of the bits in memory = 1 ⇒ page in working set

Why is this not completely accurate?

 Improvement = 10 bits and interrupt every 1000
time units

page 123/9/06 CSE 30341: Operating Systems Principles

Page-Fault Frequency Scheme

Establish “acceptable” page-fault rate
 If actual rate too low, process loses frame
 If actual rate too high, process gains frame

page 133/9/06 CSE 30341: Operating Systems Principles

Other Issues -- Prepaging

Prepaging
 To reduce the large number of page faults that occurs at

process startup
 Prepage all or some of the pages a process will need,

before they are referenced
 But if prepaged pages are unused, I/O and memory was

wasted
 Assume s pages are prepaged and α of the pages is used

 Is cost of s * α save pages faults > or < than the cost of
prepaging
s * (1- α) unnecessary pages?

 α near zero ⇒ prepaging loses

page 143/9/06 CSE 30341: Operating Systems Principles

Other Issues – Page Size

Page size selection must take into
consideration:
 fragmentation
 table size
 I/O overhead
 locality

page 153/9/06 CSE 30341: Operating Systems Principles

Other Issues – TLB Reach

TLB Reach - The amount of memory accessible
from the TLB

TLB Reach = (TLB Size) X (Page Size)
 Ideally, the working set of each process is stored in

the TLB. Otherwise there is a high degree of page
faults.

 Increase the Page Size. This may lead to an
increase in fragmentation as not all applications
require a large page size

Provide Multiple Page Sizes. This allows
applications that require larger page sizes the
opportunity to use them without an increase in
fragmentation.

page 163/9/06 CSE 30341: Operating Systems Principles

Other Issues – Program Structure
Program structure

 Int[128,128] data;
Each row is stored in one page
Program 1
 for (j = 0; j <128; j++)

 for (i = 0; i < 128; i++)
 data[i,j] = 0;

 128 x 128 = 16,384 page faults

Program 2
 for (i = 0; i < 128; i++)

 for (j = 0; j < 128; j++)
 data[i,j] = 0;

128 page faults

page 173/9/06 CSE 30341: Operating Systems Principles

Wrapup

Memory hierarchy:
 Speed: L1, L2, L3 caches, main memory, disk etc.
 Cost: disk, main memory, L3, L2, L1 etc.

achieve good speed by moving “interesting”
objects to higher cache levels while moving
“uninteresting” objects to lower cache levels

Hardware provides reference bit, modify bit, page
access counters, page table validity bits

OS sets them appropriately such that it will be
notified via page fault
 OS provides policies
 Hardware provides mechanisms

 Implement VM, COW etc. that are tuned to
observed workloads

