
page 13/8/06 CSE 30341: Operating Systems Principles

Page Replacement Algorithms

Want lowest page-fault rate
Evaluate algorithm by running it on a particular

string of memory references (reference string) and
computing the number of page faults on that string

 In all our examples, the reference string is
1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

page 23/8/06 CSE 30341: Operating Systems Principles

FIFO Illustrating Belady’s Anomaly

page 33/8/06 CSE 30341: Operating Systems Principles

Optimal Algorithm

Replace page that will not be used for longest
period of time

4 frames example
 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

How do you know this?
Used for measuring how well your algorithm

performs

1

2

3

4

6 page faults

4 5

page 43/8/06 CSE 30341: Operating Systems Principles

Optimal Page Replacement

page 53/8/06 CSE 30341: Operating Systems Principles

Least Recently Used (LRU) Algorithm

Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

Counter implementation
 Every page entry has a counter; every time page is

referenced through this entry, copy the clock into the
counter

 When a page needs to be changed, look at the counters
to determine which are to change

1

2

3

5

4

4 3

5

page 63/8/06 CSE 30341: Operating Systems Principles

LRU Algorithm (Cont.)

Stack implementation – keep a stack of page
numbers in a double link form:
 Page referenced:

 move it to the top
 requires 6 pointers to be changed

 Unlike counter based approach, does not search for
replacement

page 73/8/06 CSE 30341: Operating Systems Principles

Use Of A Stack to Record The Most Recent Page References

page 83/8/06 CSE 30341: Operating Systems Principles

LRU Approximation Algorithms

Reference bit
 With each page associate a bit, initially = 0
 When page is referenced bit set to 1
 Replace the one which is 0 (if one exists). We do not

know the order, however.
Additional reference bits

 Hardware sets bit, OS periodically shifts bit
Second chance

 Need reference bit
 Clock replacement
 FIFO algorithm; if page to be replaced (in clock order)

has reference bit = 1 then:
 set reference bit 0
 leave page in memory
 replace next page (in clock order), subject to same rules

page 93/8/06 CSE 30341: Operating Systems Principles

Second-Chance (clock) Page-Replacement Algorithm

Enhanced second-chance (reference & modified bit)

page 103/8/06 CSE 30341: Operating Systems Principles

Counting Algorithms

Keep a counter of the number of references that
have been made to each page

LFU Algorithm: replaces page with smallest count.
One problem is that pages that were active a long
time back may survive. Can use a policy that shifts
the counter periodically.

MFU Algorithm: based on the argument that the
page with the smallest count was probably just
brought in and has yet to be used

page 113/8/06 CSE 30341: Operating Systems Principles

Page buffering algorithms

Maintain a pool of free-frames
 If page needs to be written to disk, allocate a page from

free pool, and once the write completes return that page
to the free pool

List of modified files and when idle, write contents
to disk and reset modified bit

Move pages to free-list, but if process needs that
page again, move it from free to active list

page 123/8/06 CSE 30341: Operating Systems Principles

Allocation of Frames

How should the OS distribute the frames among
the various processes?

Each process needs minimum number of pages -
at least the minimum number of pages required for
a single assembly instruction to complete

Example: IBM 370 – 6 pages to handle SS MOVE
instruction:
 instruction is 6 bytes, might span 2 pages
 2 pages to handle from
 2 pages to handle to

Two major allocation schemes
 fixed allocation
 priority allocation

page 133/8/06 CSE 30341: Operating Systems Principles

Fixed Allocation
Equal allocation – For example, if there are 100

frames and 5 processes, give each process 20
frames.

Proportional allocation – Allocate according to the
size of process

m
S

s
pa

m

sS

ps

i
ii

i

ii

!==

=

"=

=

 for allocation

frames of number total

 process of size

5964
137

127

564
137

10

127

10

64

2

1

2

!"=

!"=

=

=

=

a

a

s

s

m

i

page 143/8/06 CSE 30341: Operating Systems Principles

Priority Allocation

Use a proportional allocation scheme using
priorities rather than size

 If process Pi generates a page fault,
 select for replacement one of its frames
 select for replacement a frame from a process

with lower priority number

page 153/8/06 CSE 30341: Operating Systems Principles

Global vs. Local Allocation

Global replacement – process selects a
replacement frame from the set of all frames; one
process can take a frame from another
 It is possible for processes to suffer page faults through

no fault of theirs
 However, improves system throughput

Local replacement – each process selects from
only its own set of allocated frames
 May not use free space in the system

page 163/8/06 CSE 30341: Operating Systems Principles

Thrashing

 If a process does not have “enough” pages, the
page-fault rate is very high. This leads to:
 low CPU utilization
 operating system thinks that it needs to increase the

degree of multiprogramming because of low cpu
utilization

 another process added to the system

Thrashing ≡ a process is busy swapping pages in
and out

page 173/8/06 CSE 30341: Operating Systems Principles

Thrashing (Cont.)

page 183/8/06 CSE 30341: Operating Systems Principles

Demand Paging and Thrashing

 Why does demand paging work?
Locality model
 Process migrates from one locality to another
 Localities may overlap
 E.g.
for (……) {

computations;
}
for (…..) {

computations;
}

 Why does thrashing occur?
Σ size of locality > total memory size

page 193/8/06 CSE 30341: Operating Systems Principles

Locality In A Memory-Reference Pattern

page 203/8/06 CSE 30341: Operating Systems Principles

Working-Set Model

Δ ≡ working-set window ≡ a fixed number of
page references
Example: 10,000 instruction

WSSi (working set of Process Pi) =
total number of pages referenced in the most
recent Δ (varies in time)
 if Δ too small will not encompass entire locality
 if Δ too large will encompass several localities
 if Δ = ∞ ⇒ will encompass entire program

D = Σ WSSi ≡ total demand frames
 if D > m ⇒ Thrashing
Policy if D > m, then suspend one of the

processes

page 213/8/06 CSE 30341: Operating Systems Principles

Working-set model

page 223/8/06 CSE 30341: Operating Systems Principles

Keeping Track of the Working Set

Approximate with interval timer + a reference bit
Example: Δ = 10,000

 Timer interrupts after every 5000 time units
 Keep in memory 2 bits for each page
 Whenever a timer interrupts copy and sets the values of

all reference bits to 0
 If one of the bits in memory = 1 ⇒ page in working set

Why is this not completely accurate?

 Improvement = 10 bits and interrupt every 1000
time units

page 233/8/06 CSE 30341: Operating Systems Principles

Page-Fault Frequency Scheme

Establish “acceptable” page-fault rate
 If actual rate too low, process loses frame
 If actual rate too high, process gains frame

