
page 13/8/06 CSE 30341: Operating Systems Principles

Page Replacement Algorithms

Want lowest page-fault rate
Evaluate algorithm by running it on a particular

string of memory references (reference string) and
computing the number of page faults on that string

 In all our examples, the reference string is
1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

page 23/8/06 CSE 30341: Operating Systems Principles

FIFO Illustrating Belady’s Anomaly

page 33/8/06 CSE 30341: Operating Systems Principles

Optimal Algorithm

Replace page that will not be used for longest
period of time

4 frames example
 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

How do you know this?
Used for measuring how well your algorithm

performs

1

2

3

4

6 page faults

4 5

page 43/8/06 CSE 30341: Operating Systems Principles

Optimal Page Replacement

page 53/8/06 CSE 30341: Operating Systems Principles

Least Recently Used (LRU) Algorithm

Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

Counter implementation
 Every page entry has a counter; every time page is

referenced through this entry, copy the clock into the
counter

 When a page needs to be changed, look at the counters
to determine which are to change

1

2

3

5

4

4 3

5

page 63/8/06 CSE 30341: Operating Systems Principles

LRU Algorithm (Cont.)

Stack implementation – keep a stack of page
numbers in a double link form:
 Page referenced:

 move it to the top
 requires 6 pointers to be changed

 Unlike counter based approach, does not search for
replacement

page 73/8/06 CSE 30341: Operating Systems Principles

Use Of A Stack to Record The Most Recent Page References

page 83/8/06 CSE 30341: Operating Systems Principles

LRU Approximation Algorithms

Reference bit
 With each page associate a bit, initially = 0
 When page is referenced bit set to 1
 Replace the one which is 0 (if one exists). We do not

know the order, however.
Additional reference bits

 Hardware sets bit, OS periodically shifts bit
Second chance

 Need reference bit
 Clock replacement
 FIFO algorithm; if page to be replaced (in clock order)

has reference bit = 1 then:
 set reference bit 0
 leave page in memory
 replace next page (in clock order), subject to same rules

page 93/8/06 CSE 30341: Operating Systems Principles

Second-Chance (clock) Page-Replacement Algorithm

Enhanced second-chance (reference & modified bit)

page 103/8/06 CSE 30341: Operating Systems Principles

Counting Algorithms

Keep a counter of the number of references that
have been made to each page

LFU Algorithm: replaces page with smallest count.
One problem is that pages that were active a long
time back may survive. Can use a policy that shifts
the counter periodically.

MFU Algorithm: based on the argument that the
page with the smallest count was probably just
brought in and has yet to be used

page 113/8/06 CSE 30341: Operating Systems Principles

Page buffering algorithms

Maintain a pool of free-frames
 If page needs to be written to disk, allocate a page from

free pool, and once the write completes return that page
to the free pool

List of modified files and when idle, write contents
to disk and reset modified bit

Move pages to free-list, but if process needs that
page again, move it from free to active list

page 123/8/06 CSE 30341: Operating Systems Principles

Allocation of Frames

How should the OS distribute the frames among
the various processes?

Each process needs minimum number of pages -
at least the minimum number of pages required for
a single assembly instruction to complete

Example: IBM 370 – 6 pages to handle SS MOVE
instruction:
 instruction is 6 bytes, might span 2 pages
 2 pages to handle from
 2 pages to handle to

Two major allocation schemes
 fixed allocation
 priority allocation

page 133/8/06 CSE 30341: Operating Systems Principles

Fixed Allocation
Equal allocation – For example, if there are 100

frames and 5 processes, give each process 20
frames.

Proportional allocation – Allocate according to the
size of process

m
S

s
pa

m

sS

ps

i
ii

i

ii

!==

=

"=

=

 for allocation

frames of number total

 process of size

5964
137

127

564
137

10

127

10

64

2

1

2

!"=

!"=

=

=

=

a

a

s

s

m

i

page 143/8/06 CSE 30341: Operating Systems Principles

Priority Allocation

Use a proportional allocation scheme using
priorities rather than size

 If process Pi generates a page fault,
 select for replacement one of its frames
 select for replacement a frame from a process

with lower priority number

page 153/8/06 CSE 30341: Operating Systems Principles

Global vs. Local Allocation

Global replacement – process selects a
replacement frame from the set of all frames; one
process can take a frame from another
 It is possible for processes to suffer page faults through

no fault of theirs
 However, improves system throughput

Local replacement – each process selects from
only its own set of allocated frames
 May not use free space in the system

page 163/8/06 CSE 30341: Operating Systems Principles

Thrashing

 If a process does not have “enough” pages, the
page-fault rate is very high. This leads to:
 low CPU utilization
 operating system thinks that it needs to increase the

degree of multiprogramming because of low cpu
utilization

 another process added to the system

Thrashing ≡ a process is busy swapping pages in
and out

page 173/8/06 CSE 30341: Operating Systems Principles

Thrashing (Cont.)

page 183/8/06 CSE 30341: Operating Systems Principles

Demand Paging and Thrashing

 Why does demand paging work?
Locality model
 Process migrates from one locality to another
 Localities may overlap
 E.g.
for (……) {

computations;
}
for (…..) {

computations;
}

 Why does thrashing occur?
Σ size of locality > total memory size

page 193/8/06 CSE 30341: Operating Systems Principles

Locality In A Memory-Reference Pattern

page 203/8/06 CSE 30341: Operating Systems Principles

Working-Set Model

Δ ≡ working-set window ≡ a fixed number of
page references
Example: 10,000 instruction

WSSi (working set of Process Pi) =
total number of pages referenced in the most
recent Δ (varies in time)
 if Δ too small will not encompass entire locality
 if Δ too large will encompass several localities
 if Δ = ∞ ⇒ will encompass entire program

D = Σ WSSi ≡ total demand frames
 if D > m ⇒ Thrashing
Policy if D > m, then suspend one of the

processes

page 213/8/06 CSE 30341: Operating Systems Principles

Working-set model

page 223/8/06 CSE 30341: Operating Systems Principles

Keeping Track of the Working Set

Approximate with interval timer + a reference bit
Example: Δ = 10,000

 Timer interrupts after every 5000 time units
 Keep in memory 2 bits for each page
 Whenever a timer interrupts copy and sets the values of

all reference bits to 0
 If one of the bits in memory = 1 ⇒ page in working set

Why is this not completely accurate?

 Improvement = 10 bits and interrupt every 1000
time units

page 233/8/06 CSE 30341: Operating Systems Principles

Page-Fault Frequency Scheme

Establish “acceptable” page-fault rate
 If actual rate too low, process loses frame
 If actual rate too high, process gains frame

