
page 13/6/06 CSE 30341: Operating Systems Principles

Background

Virtual memory – separation of user logical
memory from physical memory.
 Only part of the program needs to be in memory for

execution.
 Logical address space can therefore be much larger than

physical address space.
 Allows address spaces to be shared by several

processes.
 Allows for more efficient process creation.

Virtual memory can be implemented via:
 Demand paging
 Demand segmentation

page 23/6/06 CSE 30341: Operating Systems Principles

Demand Paging

Bring a page into memory only when it is needed
 Less I/O needed if not all pages are needed
 Less memory needed
 Faster response
 More users

Page is needed ⇒ reference to it
 invalid reference ⇒ abort
 not-in-memory ⇒ bring to memory

page 33/6/06 CSE 30341: Operating Systems Principles

Valid-Invalid Bit
 With each page table entry a valid–invalid bit is associated

(1 ⇒ in-memory, 0 ⇒ not-in-memory)
 Initially valid–invalid but is set to 0 on all entries
 Example of a page table snapshot:

 During address translation, if valid–invalid bit in page table entry is 0 ⇒
page fault

1
1
1
1
0

0
0

M

Frame # valid-invalid bit

page table

page 43/6/06 CSE 30341: Operating Systems Principles

Page Table When Some Pages Are Not
in Main Memory

page 53/6/06 CSE 30341: Operating Systems Principles

Page Fault
 If there is ever a reference to a page, first reference will trap to

OS ⇒ page fault
 OS looks at another table to decide:

 Invalid reference ⇒ abort.
 Just not in memory.

 Get empty frame.
 Swap page into frame.
 Reset tables, validation bit = 1.
 Restart instruction: Least Recently Used

 block move

 auto increment/decrement location

page 63/6/06 CSE 30341: Operating Systems Principles

Steps in Handling a Page Fault

page 73/6/06 CSE 30341: Operating Systems Principles

What happens if there is no free frame?

Page replacement – find some page in memory, but
not really in use, swap it out
 algorithm
 performance – want an algorithm which will result in

minimum number of page faults

Same page may be brought into memory several
times

page 83/6/06 CSE 30341: Operating Systems Principles

Performance of Demand Paging

Page Fault Rate 0 ≤ p ≤ 1.0
 if p = 0 no page faults
 if p = 1, every reference is a fault

Effective Access Time (EAT)
EAT = (1 – p) x memory access

+ p (page fault overhead
+ [swap page out]
+ swap page in
+ restart overhead)

page 93/6/06 CSE 30341: Operating Systems Principles

Demand Paging Example

Memory access time = 1 microsecond

50% of the time the page that is being replaced
has been modified and therefore needs to be
swapped out

Swap Page Time = 10 msec = 10,000 msec
EAT = (1 – p) x 1 + p (15000)

1 + 15000P (in msec)

page 103/6/06 CSE 30341: Operating Systems Principles

Process Creation

 Virtual memory allows other benefits during
process creation:
- Copy-on-Write
- Memory-Mapped Files (later)

page 113/6/06 CSE 30341: Operating Systems Principles

Copy-on-Write

Copy-on-Write (COW) allows both parent and child
processes to initially share the same pages in
memory

If either process modifies a shared page, only then
is the page copied

COW allows more efficient process creation as
only modified pages are copied

Free pages are allocated from a pool of zeroed-out
pages

page 123/6/06 CSE 30341: Operating Systems Principles

Page Replacement

Prevent over-allocation of memory by modifying
page-fault service routine to include page
replacement

Use modify (dirty) bit to reduce overhead of page
transfers – only modified pages are written to disk

Page replacement completes separation between
logical memory and physical memory – large virtual
memory can be provided on a smaller physical
memory

page 133/6/06 CSE 30341: Operating Systems Principles

Need For Page Replacement

page 143/6/06 CSE 30341: Operating Systems Principles

Basic Page Replacement

Find the location of the desired page on disk

Find a free frame:
- If there is a free frame, use it
- If there is no free frame, use a page

replacement algorithm to select a victim frame

Read the desired page into the (newly) free frame.
Update the page and frame tables.

Restart the process

page 153/6/06 CSE 30341: Operating Systems Principles

Page Replacement

page 163/6/06 CSE 30341: Operating Systems Principles

Page Replacement Algorithms

Want lowest page-fault rate
Evaluate algorithm by running it on a particular

string of memory references (reference string) and
computing the number of page faults on that string

 In all our examples, the reference string is
1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

page 173/6/06 CSE 30341: Operating Systems Principles

Graph of Page Faults Versus The Number of Frames

page 183/6/06 CSE 30341: Operating Systems Principles

First-In-First-Out (FIFO) Algorithm

 Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
 3 frames (3 pages can be in memory at a time per process)

 4 frames

 FIFO Replacement – Belady’s Anomaly
 more frames ⇒ more page faults

1

2

3

1

2

3

4

1

2

5

3

4

9 page faults

1

2

3

1

2

3

5

1

2

4

5 10 page faults

44 3

page 193/6/06 CSE 30341: Operating Systems Principles

FIFO Page Replacement

page 203/6/06 CSE 30341: Operating Systems Principles

FIFO Illustrating Belady’s Anomaly

page 213/6/06 CSE 30341: Operating Systems Principles

Optimal Algorithm

Replace page that will not be used for longest
period of time

4 frames example
 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

How do you know this?
Used for measuring how well your algorithm

performs

1

2

3

4

6 page faults

4 5

page 223/6/06 CSE 30341: Operating Systems Principles

Optimal Page Replacement

