
page 13/3/06 CSE 30341: Operating Systems Principles

FYI

 Itanium2 (1.66 GHz processor)
L1-I (16 kbytes), 1 cycle
L1-D (16 kbytes), 1 cycle
L2 (256 KB), 5, 7 or 9+ cycles
L3 (3 MB, 4 MB, 6 MB or 9 MB), 12+ cycles

 Intel core duo processor (2.16 GHz)
32 KB L1 cache
L2 (2 MB)

Ultrasparc IV+ processor
Level 1: 64 KB data and 64 KB instruction per

pipeline
Level 2: 2 MB
Level 3: 32 MB

page 23/3/06 CSE 30341: Operating Systems Principles

Memory Protection

Memory protection implemented by associating
protection bit with each frame

Valid-invalid bit attached to each entry in the page
table:
 “valid” indicates that the associated page is in the process’

logical address space, and is thus a legal page
 “invalid” indicates that the page is not in the process’ logical

address space

page 33/3/06 CSE 30341: Operating Systems Principles

Valid (v) or Invalid (i) Bit In A Page
Table

page 43/3/06 CSE 30341: Operating Systems Principles

Page Table Structure

Problem is that page tables are per-process
structure and they can be large. Discuss for 64 bit
architecture.

Hierarchical Paging

Hashed Page Tables

 Inverted Page Tables

page 53/3/06 CSE 30341: Operating Systems Principles

Hierarchical Page Tables

Break up the logical address space into multiple
page tables

A simple technique is a two-level page table

page 63/3/06 CSE 30341: Operating Systems Principles

Two-Level Paging Example
 A logical address (on 32-bit machine with 4K page size) is divided

into:
 a page number consisting of 20 bits
 a page offset consisting of 12 bits

 Since the page table is paged, the page number is further divided
into:
 a 10-bit page number
 a 10-bit page offset

 Thus, a logical address is as follows:

where pi is an index into the outer page table, and p2 is the
displacement within the page of the outer page table

page number page offset

pi p2 d

10 10 12

page 73/3/06 CSE 30341: Operating Systems Principles

Two-Level Page-Table Scheme

page 83/3/06 CSE 30341: Operating Systems Principles

Address-Translation Scheme
Address-translation scheme for a two-level 32-bit

paging architecture

page 93/3/06 CSE 30341: Operating Systems Principles

Hashed Page Tables
Common in address spaces > 32 bits

The virtual page number is hashed into a page table.
This page table contains a chain of elements hashing
to the same location.

Virtual page numbers are compared in this chain
searching for a match. If a match is found, the
corresponding physical frame is extracted.

page 103/3/06 CSE 30341: Operating Systems Principles

Hashed Page Table

page 113/3/06 CSE 30341: Operating Systems Principles

Inverted Page Table

One entry for each real page of memory
Entry consists of the virtual address of the page

stored in that real memory location, with information
about the process that owns that page

Decreases memory needed to store each page table,
but increases time needed to search the table when a
page reference occurs

Use hash table to limit the search to one — or at most
a few — page-table entries

page 123/3/06 CSE 30341: Operating Systems Principles

Inverted Page Table Architecture

page 133/3/06 CSE 30341: Operating Systems Principles

Shared Pages

Shared code
 One copy of read-only (reentrant) code shared among

processes (i.e., text editors, compilers, window systems).
 Shared code must appear in same location in the logical

address space of all processes

Private code and data
 Each process keeps a separate copy of the code and data
 The pages for the private code and data can appear

anywhere in the logical address space

page 143/3/06 CSE 30341: Operating Systems Principles

Shared Pages Example

page 153/3/06 CSE 30341: Operating Systems Principles

Segmentation
Memory-management scheme that supports user

view of memory
A program is a collection of segments. A segment is

a logical unit such as:
main program,
procedure,
function,
method,
object,
local variables, global variables,
common block,
stack,
symbol table, arrays

page 163/3/06 CSE 30341: Operating Systems Principles

User’s View of a Program

page 173/3/06 CSE 30341: Operating Systems Principles

Logical View of Segmentation

1

3

2

4

1

4

2

3

user space physical memory space

page 183/3/06 CSE 30341: Operating Systems Principles

Segmentation Architecture

Logical address consists of a two tuple:
<segment-number, offset>,

Segment table – maps two-dimensional physical
addresses; each table entry has:
base – contains the starting physical address where the

segments reside in memory
 limit – specifies the length of the segment

Segment-table base register (STBR) points to the
segment table’s location in memory

Segment-table length register (STLR) indicates
number of segments used by a program;
 segment number s is legal if s < STLR

page 193/3/06 CSE 30341: Operating Systems Principles

Segmentation Architecture (Cont.)
Relocation.

 dynamic
 by segment table

Sharing.
 shared segments
 same segment number

Allocation.
 first fit/best fit
 external fragmentation

page 203/3/06 CSE 30341: Operating Systems Principles

Segmentation Architecture (Cont.)

Protection. With each entry in segment table
associate:
 validation bit = 0 ⇒ illegal segment
 read/write/execute privileges

Protection bits associated with segments; code
sharing occurs at segment level

Since segments vary in length, memory allocation is
a dynamic storage-allocation problem

A segmentation example is shown in the following
diagram

page 213/3/06 CSE 30341: Operating Systems Principles

Address Translation Architecture

page 223/3/06 CSE 30341: Operating Systems Principles

Example of Segmentation

page 233/3/06 CSE 30341: Operating Systems Principles

Sharing of Segments

page 243/3/06 CSE 30341: Operating Systems Principles

Segmentation with Paging – MULTICS

The MULTICS system solved problems of external
fragmentation and lengthy search times by paging
the segments

Solution differs from pure segmentation in that the
segment-table entry contains not the base address
of the segment, but rather the base address of a
page table for this segment

page 253/3/06 CSE 30341: Operating Systems Principles

MULTICS Address Translation Scheme

page 263/3/06 CSE 30341: Operating Systems Principles

Intel 30386 Address Translation
segmentation with paging for memory

management with a two-level paging scheme

page 273/3/06 CSE 30341: Operating Systems Principles

Linux on Intel 80x86

Uses minimal segmentation to keep memory
management implementation more portable

Uses 6 segments:
 Kernel code
 Kernel data
 User code (shared by all user processes, using logical

addresses)
 User data (likewise shared)
 Task-state (per-process hardware context)
 LDT

Uses 2 protection levels:
 Kernel mode
 User mode

