.

intm=m + 1;

printf("m = %s\n", m); Data Data
(m) (const

» Need data storage space
for m (modifiable)

» Need data storage space
for “m = %s\n”. This is a
constant and not
modifiable

ynamic link
Printf()

» Remember the memory
hierarchy

3/1/06 CSE 30341: Operating Systems Principles page 1

- Contiguous Allocation

» Main memory usually into two partitions:

B Resident operating system, usually held in low memory
with interrupt vector

B User processes then held in high memory

» Single-partition allocation

B Relocation-register scheme used to protect user processes
from each other, and from changing operating-system code
and data

B Relocation register contains value of smallest physical
address; limit register contains range of logical addresses —
each logical address must be less than the limit register

I 3/1/06 CSE 30341: Operating Systems Principles page 2

Contiguous Allocation (Cont.)

» Multiple-partition allocation

B Hole — block of available memory; holes of various size
are scattered throughout memory

m When a process arrives, it is allocated memory from a
hole large enough to accommodate it

B Operating system maintains information about:
a) allocated partitions b) free partitions (hole)

0OS 0OS oS oS
process 5 process 5 process 5 process 5
process 9 process 9
process 8 |::> |::> |::> process 10
process 2 process 2 process 2 process 2

I 3/1/06 CSE 30341: Operating Systems Principles page 3

Dynamic Storage-Allocation Problem

How to satisfy a request of size n from a list of free holes

» First-fit: Allocate the first hole that is big enough

» Best-fit: Allocate the smallest hole that is big
enough; must search entire list, unless ordered by
size. Produces the smallest leftover hole.

» Worst-fit: Allocate the /largest hole; must also
search entire list. Produces the largest leftover
hole.

First-fit and best-fit better than worst-fit in terms of speed and
storage utilization

3/1/06 CSE 30341: Operating Systems Principles page 4

-I Fragmentation

» External Fragmentation — total memory space
exists to satisfy a request, but it is not contiguous

» Internal Fragmentation — allocated memory may be
slightly larger than requested memory; this size
difference is memory internal to a partition, but not
being used

» Reduce external fragmentation by compaction

m Shuffle memory contents to place all free memory together
in one large block
B Compaction is possible only if relocation is dynamic, and is
done at execution time
m |/O problem
® Latch job in memory while it is involved in I/O
® Do I/O only into OS buffers

I 3/1/06 CSE 30341: Operating Systems Principles page 5

Paging for noncontiguous allocation

» Logical address space of a process can be
noncontiguous; process is allocated physical
memory whenever the latter is available

» Divide physical memory into fixed-sized blocks
called frames (size is power of 2, between 512
bytes and 8192 bytes)

» Divide logical memory into blocks of same size
called pages.

» Keep track of all free frames

» To run a program of size n pages, need to find n
free frames and load program

» Set up a page table to translate logical to physical
addresses

» This scheme will create internal fragmentation

3/1/06 CSE 30341: Operating Systems Principles page 6

-I Address Translation Scheme

» Address generated by CPU is divided into:

B Page number (p) — used as an index into a page table
which contains base address of each page in physical
memory

B Page offset (d) — combined with base address to define
the physical memory address that is sent to the memory
unit

I 3/1/06 CSE 30341: Operating Systems Principles page 7

Address Translation Architecture

ERE

logical
address

physical
address

v

f0000 ... 0000

d

page table

il oo

physical
memory

CSE 30341: Operating Systems Principles

page 8

Paging Example

frame
number
page O 0
01
page 1 112 1| page O
2 &8
age 2 2
pag N
page 3 page table 3| page 2
logical 4| page 1
memory
5
6
7| page 3
physical
memory

CSE 30341: Operating Systems Principles page 9

Paging Example

0|a
1]b
2 | ¢
3|d
4 e
5| f
6|9
7 | h
8 | i
9]
10| k
1] 1
12| m
13| n
14| o
15| p

flogical memory

3/1/06

N = O
||,

3|2
page table

h

&
J
k
|
8 m
n
0
p
12
16
20 a
b
o
d
24 | ©
f
g
h
28
sical memor

CSE 30341: Operating Systems Principles

page 10

-I Free Frames

free-frame list free-frame list
14 15
13 13 13 |page 1
18
20 14 14 |page 0
15
e N 15 15
=a Q
page 0 16 page O 16
page 1 page 1
page 2 17 page 2 17
page 3 page 3
19 o012 19
1|13
20 2|18 20 |page 3
3120
21 new-process page table 21
(a) (b)
Before allocation After allocation

I 3/1/06 CSE 30341: Operating Systems Principles page 11

Implementation of Page Table

» Page table is kept in main memory

» Page-table base register (PTBR) points to the page
table

» Page-table length register (PRLR) indicates size of
the page table

» In this scheme every data/instruction access
requires two memory accesses. One for the page
table and one for the data/instruction.

» The two memory access problem can be solved by
the use of a special fast-lookup hardware cache

called associative memory or translation look-

aside buffers (TLBs)

3/1/06 CSE 30341: Operating Systems Principles page 12

- Associative Memory

» Associative memory — parallel search

Page # Frame #

Address translation (A", A™)

m If A" is in associative register, get frame # out
m Otherwise get frame # from page table in memory

3/1/06 CSE 30341: Operating Systems Principles page 13

Paging Hardware With TLB

page frame
number number

TLB hit

YYVYYYY

TLB miss

TLB

physical
l ! address
f d
A

page table

physical
memory

3/1/06

CSE 30341: Operating Systems Principles

-I Effective Access Time

» Associative Lookup = ¢ time unit
» Assume memory cycle time is 1 microsecond

» Hit ratio — percentage of times that a page
number is found in the associative registers;
ration related to number of associative
registers

» Hit ratio = o
» Effective Access Time (EAT)
EAT=(1+¢)a+(2+¢)(1—-a)

=2+ec—q

3/1/06 CSE 30341: Operating Systems Principles page 15

- Memory Protection

» Memory protection implemented by associating
protection bit with each frame

» Valid-invalid bit attached to each entry in the page
table:

m “valid” indicates that the associated page is in the process’
logical address space, and is thus a legal page

B “invalid” indicates that the page is not in the process’ logical
address space

3/1/06 CSE 30341: Operating Systems Principles page 16

Valid (v) or Invalid (i) Bit In A Page
Table

2| page 0
00000 frame number valid—invalid bit
page 0 \ / 3| page 1
0|2|v
page 1 1 BBy 4| page 2
214 | v
age 2 5
- 3TF [TV
page 3 4 8V 6
5|19 |v
page 4 6[0]i 7| page3
10,468 page 5 7 Eond 8| page 4
12,287 page table
9| page 5
page n

CSE 30341: Operating Systems Principles page 17

Page Table Structure

» Problem is that page tables are per-process
structure and they can be large. Discuss for 64 bit
architecture.

» Hierarchical Paging

» Hashed Page Tables

» Inverted Page Tables

3/1/06 CSE 30341: Operating Systems Principles page 18

-I Hierarchical Page Tables

» Break up the logical address space into multiple
page tables

» A simple technique is a two-level page table

3/1/06 CSE 30341: Operating Systems Principles page 19

Two-Level Paging Example

A logical address (on 32-bit machine with 4K page size) is divided
into:

B a page number consisting of 20 bits

B a page offset consisting of 12 bits

» Since the page table is paged, the page number is further divided
into:

m a 10-bit page number

B a 10-bit page offset

» Thus, a logical address is as follows:

page number page offset
P, P> d
10 10 12

where p; is an index into the outer page table, and p, is the
displacement within the page of the outer page table

3/1/06 CSE 30341: Operating Systems Principles page 20

outer page
table

900

page of
page table

page table

memory

3/1/06 CSE 30341: Operating Systems Principles

Address-TransIation Scheme

» Address-translation scheme for a two-level 32-bit
paging architecture

logical address
Py | P2 | d

|

P

.

outer page d
table {

page of
page table

3/1/06 CSE 30341: Operating Systems Principles page 22

- Hashed Page Tables

» Common in address spaces > 32 bits

» The virtual page number is hashed into a page table.
This page table contains a chain of elements hashing
to the same location.

» Virtual page numbers are compared in this chain
searching for a match. If a match is found, the
corresponding physical frame is extracted.

3/1/06 CSE 30341: Operating Systems Principles page 23

- Hashed Page Table

physical
logical address J' address

p d r 0] —

physical
-—-Iq|S|’T|_TIp|r|_T~- mermory

hash table

I 3/1/06 CSE 30341: Operating Systems Principles page 24

- Inverted Page Table

» One entry for each real page of memory

» Entry consists of the virtual address of the page
stored in that real memory location, with information
about the process that owns that page

» Decreases memory needed to store each page table,
but increases time needed to search the table when a
page reference occurs

» Use hash table to limit the search to one — or at most
a few — page-table entries

3/1/06 CSE 30341: Operating Systems Principles page 25

Inverted Page Table Architecture

logical :
address ‘L pg)(;smal
address :
. : physical
> pd] P d L d > memory
search l }i
pid | p

page table

CSE 30341: Operating Systems Principles page 26

-I Shared Pages

» Shared code

m One copy of read-only (reentrant) code shared among
processes (i.e., text editors, compilers, window systems).

B Shared code must appear in same location in the logical
address space of all processes

» Private code and data

B Each process keeps a separate copy of the code and data

B The pages for the private code and data can appear
anywhere in the logical address space

3/1/06 CSE 30341: Operating Systems Principles page 27

I Shared Pages Example

I 3/1/06

ed 1

ed?2

ed 3

data 1

process P,

ed 1

ed?2

ed 3

data 3

process P,

3
4
6
1
page table
for Py ed 1
ed?2
ed3
data 2
= process P,
4
6
2
page table
for P,

N|o |~ |Ww
(6]

page table
for P,

10

data 1

data 3

ed 1

ed?

ed3

data 2

CSE 30341: Operating Systems Principles

page 28

- Segmentation

» Memory-management scheme that supports user
view of memory

» A program is a collection of segments. A segment is
a logical unit such as:

main program,
procedure,
function,
method,
object,

local variables, global variables,
common block,
stack,

symbol table, arrays

3/1/06 CSE 30341: Operating Systems Principles page 29

User’'s View of a Program

subroutine

symbol
table

Sqrt

main
program

logical address

3/1/06 CSE 30341: Operating Systems Principles page 30

Logical View of Segmentation

user space physical memory space

3/1/06 CSE 30341: Operating Systems Principles

Segmentation Architecture

» Logical address consists of a two tuple:
<segment-number, offset>,

» Segment table — maps two-dimensional physical
addresses; each table entry has:

B base — contains the starting physical address where the
segments reside in memory

B /imit — specifies the length of the segment

» Segment-table base register (STBR) points to the
segment table’s location in memory

» Segment-table length register (STLR) indicates
number of segments used by a program;

segment number s is legal if s < STLR

3/1/06 CSE 30341: Operating Systems Principles page 32

Segmentation Architecture (Cont.)

» Relocation.
B dynamic
B by segment table

» Sharing.
B shared segments
B same segment number

» Allocation.
m first fit/best fit
B external fragmentation

I 3/1/06 CSE 30341: Operating Systems Principles page 33

Segmentation Architecture (Cont.)

» Protection. With each entry in segment table
associate:
B validation bit = 0 = illegal segment

B read/write/execute privileges

» Protection bits associated with segments; code
sharing occurs at segment level

» Since segments vary in length, memory allocation is
a dynamic storage-allocation problem

» A segmentation example is shown in the following
diagram

3/1/06 CSE 30341: Operating Systems Principles page 34

Address Translation Architecture

-

segment
table

NS &

no

CPU o s d

\/
trap: addressing error physical memory

CSE 30341: Operating Systems Principles page 35

Example of Segmentation

subroutine stack
1400
segment 3 segment 0
2400
symbol
segment 0 table
limit | base
Sqrt segment 4 0| 1000 | 1400
1| 400 | 6300 3200
main 2| 400 | 4300
program 3] 1100 | 3200 segment3
411000 | 4700

segment table 4300

segment 1 segment 2

segment 2

4700

logical address space segment 4

5700

6300

segment 1

6700
physical memoryv
3/1/06 CSE 30341: Operating Systems Principles page 36

Sharing of Segments

editor

segment 0

data 1

limit | base

segment 1

logical memory
process P,

editor

segment 0

25286 | 43062
4425 | 68348

data 2

segment table
process P,

limit | base

segment 1

logical memory
process P,

25286 | 43062
8850 | 90003

segment table
process P,

43062

68348
72773

90003

98553

editor

data 1

data 2

physical memory

3/1/06

CSE 30341: Operating Systems Principles page 37

Segmentation with Paging — MULTICS

» The MULTICS system solved problems of external
fragmentation and lengthy search times by paging
the segments

» Solution differs from pure segmentation in that the
segment-table entry contains not the base address
of the segment, but rather the base address of a

page table for this segment

3/1/06 CSE 30341: Operating Systems Principles page 38

MULTICS Address Translation Scheme

logical address

L yes

segment | page-—table
length base no |:d:|
segment table trap Hp _|d’

STBR

memory

—p®—>f—>|f|d"|—>

physical
address

page table for
segment s

3/1/06 CSE 30341: Operating Systems Principles page 39

Intel 30386 Address Translation

» segmentation with paging for memory
management with a two-level paging scheme

logical address ‘ selector | offset ‘
| descriptor table
segment descriptor —>®<—
linear address ‘ directory ‘ page | offset | page frame
» physical address
page directory page table
» directory entry = | page table entry J

page directory ‘ T
base register

06 034 Operating e = ple page 40

- Linux on Intel 80x86

» Uses minimal segmentation to keep memory
management implementation more portable

» Uses 6 segments:
B Kernel code
B Kernel data

B User code (shared by all user processes, using logical
addresses)

B User data (likewise shared)
B Task-state (per-process hardware context)
m LDT

» Uses 2 protection levels:
m Kernel mode
m User mode

3/1/06 CSE 30341: Operating Systems Principles page 41

