
page 13/1/06 CSE 30341: Operating Systems Principles

Recap

int m = m + 1;
printf(“m = %s\n”, m);

Need data storage space
for m (modifiable)

Need data storage space
for “m = %s\n”. This is a
constant and not
modifiable

Remember the memory
hierarchy

Data
(m)

Data
(const)

Text

Dynamic link
Printf()

page 23/1/06 CSE 30341: Operating Systems Principles

Contiguous Allocation

Main memory usually into two partitions:
 Resident operating system, usually held in low memory

with interrupt vector
 User processes then held in high memory

Single-partition allocation
 Relocation-register scheme used to protect user processes

from each other, and from changing operating-system code
and data

 Relocation register contains value of smallest physical
address; limit register contains range of logical addresses –
each logical address must be less than the limit register

page 33/1/06 CSE 30341: Operating Systems Principles

Contiguous Allocation (Cont.)

Multiple-partition allocation
 Hole – block of available memory; holes of various size

are scattered throughout memory
 When a process arrives, it is allocated memory from a

hole large enough to accommodate it
 Operating system maintains information about:

a) allocated partitions b) free partitions (hole)

OS

process 5

process 8

process 2

OS

process 5

process 2

OS

process 5

process 2

OS

process 5
process 9

process 2

process 9

process 10

page 43/1/06 CSE 30341: Operating Systems Principles

Dynamic Storage-Allocation Problem

First-fit: Allocate the first hole that is big enough
Best-fit: Allocate the smallest hole that is big

enough; must search entire list, unless ordered by
size. Produces the smallest leftover hole.

Worst-fit: Allocate the largest hole; must also
search entire list. Produces the largest leftover
hole.

How to satisfy a request of size n from a list of free holes

First-fit and best-fit better than worst-fit in terms of speed and
storage utilization

page 53/1/06 CSE 30341: Operating Systems Principles

Fragmentation

External Fragmentation – total memory space
exists to satisfy a request, but it is not contiguous

 Internal Fragmentation – allocated memory may be
slightly larger than requested memory; this size
difference is memory internal to a partition, but not
being used

Reduce external fragmentation by compaction
 Shuffle memory contents to place all free memory together

in one large block
 Compaction is possible only if relocation is dynamic, and is

done at execution time
 I/O problem

 Latch job in memory while it is involved in I/O
 Do I/O only into OS buffers

page 63/1/06 CSE 30341: Operating Systems Principles

Paging for noncontiguous allocation

Logical address space of a process can be
noncontiguous; process is allocated physical
memory whenever the latter is available

Divide physical memory into fixed-sized blocks
called frames (size is power of 2, between 512
bytes and 8192 bytes)

Divide logical memory into blocks of same size
called pages.

Keep track of all free frames
To run a program of size n pages, need to find n

free frames and load program
Set up a page table to translate logical to physical

addresses
This scheme will create internal fragmentation

page 73/1/06 CSE 30341: Operating Systems Principles

Address Translation Scheme

Address generated by CPU is divided into:

 Page number (p) – used as an index into a page table
which contains base address of each page in physical
memory

 Page offset (d) – combined with base address to define
the physical memory address that is sent to the memory
unit

page 83/1/06 CSE 30341: Operating Systems Principles

Address Translation Architecture

page 93/1/06 CSE 30341: Operating Systems Principles

Paging Example

page 103/1/06 CSE 30341: Operating Systems Principles

Paging Example

page 113/1/06 CSE 30341: Operating Systems Principles

Free Frames

Before allocation After allocation

page 123/1/06 CSE 30341: Operating Systems Principles

Implementation of Page Table

Page table is kept in main memory
Page-table base register (PTBR) points to the page

table
Page-table length register (PRLR) indicates size of

the page table
 In this scheme every data/instruction access

requires two memory accesses. One for the page
table and one for the data/instruction.

The two memory access problem can be solved by
the use of a special fast-lookup hardware cache
called associative memory or translation look-
aside buffers (TLBs)

page 133/1/06 CSE 30341: Operating Systems Principles

Associative Memory

Associative memory – parallel search

Address translation (A´, A´´)
 If A´ is in associative register, get frame # out
Otherwise get frame # from page table in memory

Page # Frame #

page 143/1/06 CSE 30341: Operating Systems Principles

Paging Hardware With TLB

page 153/1/06 CSE 30341: Operating Systems Principles

Effective Access Time

Associative Lookup = ε time unit
Assume memory cycle time is 1 microsecond
Hit ratio – percentage of times that a page

number is found in the associative registers;
ration related to number of associative
registers

Hit ratio = α
Effective Access Time (EAT)

EAT = (1 + ε) α + (2 + ε)(1 – α)
= 2 + ε – α

page 163/1/06 CSE 30341: Operating Systems Principles

Memory Protection

Memory protection implemented by associating
protection bit with each frame

Valid-invalid bit attached to each entry in the page
table:
 “valid” indicates that the associated page is in the process’

logical address space, and is thus a legal page
 “invalid” indicates that the page is not in the process’ logical

address space

page 173/1/06 CSE 30341: Operating Systems Principles

Valid (v) or Invalid (i) Bit In A Page
Table

page 183/1/06 CSE 30341: Operating Systems Principles

Page Table Structure

Problem is that page tables are per-process
structure and they can be large. Discuss for 64 bit
architecture.

Hierarchical Paging

Hashed Page Tables

 Inverted Page Tables

page 193/1/06 CSE 30341: Operating Systems Principles

Hierarchical Page Tables

Break up the logical address space into multiple
page tables

A simple technique is a two-level page table

page 203/1/06 CSE 30341: Operating Systems Principles

Two-Level Paging Example
 A logical address (on 32-bit machine with 4K page size) is divided

into:
 a page number consisting of 20 bits
 a page offset consisting of 12 bits

 Since the page table is paged, the page number is further divided
into:
 a 10-bit page number
 a 10-bit page offset

 Thus, a logical address is as follows:

where pi is an index into the outer page table, and p2 is the
displacement within the page of the outer page table

page number page offset

pi p2 d

10 10 12

page 213/1/06 CSE 30341: Operating Systems Principles

Two-Level Page-Table Scheme

page 223/1/06 CSE 30341: Operating Systems Principles

Address-Translation Scheme
Address-translation scheme for a two-level 32-bit

paging architecture

page 233/1/06 CSE 30341: Operating Systems Principles

Hashed Page Tables
Common in address spaces > 32 bits

The virtual page number is hashed into a page table.
This page table contains a chain of elements hashing
to the same location.

Virtual page numbers are compared in this chain
searching for a match. If a match is found, the
corresponding physical frame is extracted.

page 243/1/06 CSE 30341: Operating Systems Principles

Hashed Page Table

page 253/1/06 CSE 30341: Operating Systems Principles

Inverted Page Table

One entry for each real page of memory
Entry consists of the virtual address of the page

stored in that real memory location, with information
about the process that owns that page

Decreases memory needed to store each page table,
but increases time needed to search the table when a
page reference occurs

Use hash table to limit the search to one — or at most
a few — page-table entries

page 263/1/06 CSE 30341: Operating Systems Principles

Inverted Page Table Architecture

page 273/1/06 CSE 30341: Operating Systems Principles

Shared Pages

Shared code
 One copy of read-only (reentrant) code shared among

processes (i.e., text editors, compilers, window systems).
 Shared code must appear in same location in the logical

address space of all processes

Private code and data
 Each process keeps a separate copy of the code and data
 The pages for the private code and data can appear

anywhere in the logical address space

page 283/1/06 CSE 30341: Operating Systems Principles

Shared Pages Example

page 293/1/06 CSE 30341: Operating Systems Principles

Segmentation
Memory-management scheme that supports user

view of memory
A program is a collection of segments. A segment is

a logical unit such as:
main program,
procedure,
function,
method,
object,
local variables, global variables,
common block,
stack,
symbol table, arrays

page 303/1/06 CSE 30341: Operating Systems Principles

User’s View of a Program

page 313/1/06 CSE 30341: Operating Systems Principles

Logical View of Segmentation

1

3

2

4

1

4

2

3

user space physical memory space

page 323/1/06 CSE 30341: Operating Systems Principles

Segmentation Architecture

Logical address consists of a two tuple:
<segment-number, offset>,

Segment table – maps two-dimensional physical
addresses; each table entry has:
base – contains the starting physical address where the

segments reside in memory
 limit – specifies the length of the segment

Segment-table base register (STBR) points to the
segment table’s location in memory

Segment-table length register (STLR) indicates
number of segments used by a program;
 segment number s is legal if s < STLR

page 333/1/06 CSE 30341: Operating Systems Principles

Segmentation Architecture (Cont.)
Relocation.

 dynamic
 by segment table

Sharing.
 shared segments
 same segment number

Allocation.
 first fit/best fit
 external fragmentation

page 343/1/06 CSE 30341: Operating Systems Principles

Segmentation Architecture (Cont.)

Protection. With each entry in segment table
associate:
 validation bit = 0 ⇒ illegal segment
 read/write/execute privileges

Protection bits associated with segments; code
sharing occurs at segment level

Since segments vary in length, memory allocation is
a dynamic storage-allocation problem

A segmentation example is shown in the following
diagram

page 353/1/06 CSE 30341: Operating Systems Principles

Address Translation Architecture

page 363/1/06 CSE 30341: Operating Systems Principles

Example of Segmentation

page 373/1/06 CSE 30341: Operating Systems Principles

Sharing of Segments

page 383/1/06 CSE 30341: Operating Systems Principles

Segmentation with Paging – MULTICS

The MULTICS system solved problems of external
fragmentation and lengthy search times by paging
the segments

Solution differs from pure segmentation in that the
segment-table entry contains not the base address
of the segment, but rather the base address of a
page table for this segment

page 393/1/06 CSE 30341: Operating Systems Principles

MULTICS Address Translation Scheme

page 403/1/06 CSE 30341: Operating Systems Principles

Intel 30386 Address Translation
segmentation with paging for memory

management with a two-level paging scheme

page 413/1/06 CSE 30341: Operating Systems Principles

Linux on Intel 80x86

Uses minimal segmentation to keep memory
management implementation more portable

Uses 6 segments:
 Kernel code
 Kernel data
 User code (shared by all user processes, using logical

addresses)
 User data (likewise shared)
 Task-state (per-process hardware context)
 LDT

Uses 2 protection levels:
 Kernel mode
 User mode

