
page 12/24/06 CSE 30341: Operating Systems Principles

Synchronization in Linux

 Atomic operations
 Operatores on atomic_t, which should be 24 bits (because that

is what you can do in the Sparc)
 ATOMIC_INIT(int I)
 atomic_read()
 atomic_set()
 atomic_add()
 test_and_set_bit()

include/asm-i386/atomic.h:
static __inline__ void atomic_add(int i, atomic_t *v)
{
 __asm__ __volatile__(
 LOCK "addl %1,%0"
 :"=m" (v->counter)
 :"ir" (i), "m" (v->counter));
}

page 22/24/06 CSE 30341: Operating Systems Principles

Itanium

include/asm-ia64/atomic.h
static __inline__ int
ia64_atomic64_add (__s64 i, atomic64_t *v)
{
 __s64 old, new;
 CMPXCHG_BUGCHECK_DECL

 do {
 CMPXCHG_BUGCHECK(v);
 old = atomic_read(v);
 new = old + i;
 } while (ia64_cmpxchg(acq, v, old, new, sizeof(atomic64_t))

!= old);
 return new;
}

page 32/24/06 CSE 30341: Operating Systems Principles

Spin locks

Check in include/asm-ia64/spinlock.h
 Architecture dependent way to spinlock

Spinlocks can be used in interrupt handlers
 Disable other interrupts

 spin_lock_irqsave()
 spin_unlock_irqrestore()

Reader writer spin locks
 Gives preference to readers over writers

page 42/24/06 CSE 30341: Operating Systems Principles

Semaphore

Linux semaphores are sleeping locks
Reader-write semaphores

Condition variables or completion variables

asm/semaphore.h

page 52/24/06 CSE 30341: Operating Systems Principles

Kernel preemption

Preempt_disable()
Preempt_enable()
Preempt_enable_no_resched()

page 62/24/06 CSE 30341: Operating Systems Principles

Linux futex

Fast user level mutex: does not have to go to
kernel space in the normal execution path

Not user friendly, expected to be used by libraries

