
page 12/20/06 CSE 30341: Operating Systems Principles

Deadlock Avoidance

Requires that the system has some additional a
priori information available.

Simplest and most useful model requires that each
process declare the maximum number of
resources of each type that it may need

The deadlock-avoidance algorithm dynamically
examines the resource-allocation state to ensure
that there can never be a circular-wait condition

Resource-allocation state is defined by the number
of available and allocated resources, and the
maximum demands of the processes

page 22/20/06 CSE 30341: Operating Systems Principles

Safe State

When a process requests an available resource,
system must decide if immediate allocation leaves
the system in a safe state

System is in safe state if there exists a safe
sequence of all processes

Sequence <P1, P2, …, Pn> is safe if for each Pi, the
resources that Pi can still request can be satisfied by
currently available resources + resources held by all
the Pj, with j<I
 If Pi resource needs are not immediately available, then Pi

can wait until all Pj have finished
When Pj is finished, Pi can obtain needed resources,

execute, return allocated resources, and terminate
When Pi terminates, Pi+1 can obtain its needed resources,

and so on

page 32/20/06 CSE 30341: Operating Systems Principles

Basic Facts

 If a system is in safe state ⇒ no deadlocks

 If a system is in unsafe state ⇒ possibility of
deadlock

Avoidance ⇒ ensure that a system will never enter
an unsafe state

page 42/20/06 CSE 30341: Operating Systems Principles

Safe, Unsafe , Deadlock State

page 52/20/06 CSE 30341: Operating Systems Principles

Resource-Allocation Graph Algorithm

Claim edge Pi → Rj indicated that process Pj may
request resource Rj; represented by a dashed line.

Claim edge converts to request edge when a
process requests a resource.

When a resource is released by a process,
assignment edge reconverts to a claim edge.

Resources must be claimed a priori in the system.

page 62/20/06 CSE 30341: Operating Systems Principles

Resource-Allocation Graph For
Deadlock Avoidance

page 72/20/06 CSE 30341: Operating Systems Principles

Unsafe State In Resource-Allocation
Graph

page 82/20/06 CSE 30341: Operating Systems Principles

Banker’s Algorithm

Multiple instances.

Each process must a priori claim maximum use.

When a process requests a resource it may have
to wait.

When a process gets all its resources it must return
them in a finite amount of time

page 92/20/06 CSE 30341: Operating Systems Principles

Data Structures for the Banker’s Algorithm

Let n = number of processes, and m = number of resources types

Available: Vector of length m. If available [j] = k,
there are k instances of resource type Rj available.

Max: n x m matrix. If Max [i,j] = k, then process Pi
may request at most k instances of resource type Rj.

Allocation: n x m matrix. If Allocation[i,j] = k then Pi
is currently allocated k instances of Rj.

Need: n x m matrix. If Need[i,j] = k, then Pi may
need k more instances of Rj to complete its task.

Need [i,j] = Max[i,j] – Allocation [i,j].

page 102/20/06 CSE 30341: Operating Systems Principles

Safety Algorithm

1. Let Work and Finish be vectors of length m
and n, respectively. Initialize:

Work = Available
Finish [i] = false for i = 0,1, …, n-1

2. Find an i such that both:
(a) Finish [i] = false
(b) Needi ≤ Work
If no such i exists, go to step 4.

3. Work = Work + Allocationi
Finish[i] = true
go to step 2.

4. If Finish [i] == true for all i, then the system is
in a safe state.

page 112/20/06 CSE 30341: Operating Systems Principles

Resource-Request Algorithm for Process Pi

 Request = request vector for process Pi. If Requesti [j]
= k then process Pi wants k instances of resource
type Rj.
1. If Requesti ≤ Needi go to step 2. Otherwise, raise error

condition, since process has exceeded its maximum claim.
2. If Requesti ≤ Available, go to step 3. Otherwise Pi must

wait, since resources are not available.
3. Pretend to allocate requested resources to Pi by modifying

the state as follows:
Available = Available = Requesti;
Allocationi = Allocationi + Requesti;
Needi = Needi – Requesti;

 If safe ⇒ the resources are allocated to Pi.
 If unsafe ⇒ Pi must wait, and the old resource-allocation state is

restored

page 122/20/06 CSE 30341: Operating Systems Principles

Example of Banker’s Algorithm

5 processes P0 through P4; 3 resource types A
(10 instances), B (5instances, and C (7 instances)

Snapshot at time T0:
Allocation Max Available

A B C A B C A B C
P0 0 1 0 7 5 3 3 3 2
 P1 2 0 0 3 2 2
 P2 3 0 2 9 0 2
 P3 2 1 1 2 2 2
 P4 0 0 2 4 3 3

page 132/20/06 CSE 30341: Operating Systems Principles

Example (Cont.)

The content of the matrix. Need is defined to be
Max – Allocation.

Need
A B C

 P0 7 4 3
 P1 1 2 2
 P2 6 0 0
 P3 0 1 1
 P4 4 3 1

The system is in a safe state since the sequence
< P1, P3, P4, P2, P0> satisfies safety criteria.

page 142/20/06 CSE 30341: Operating Systems Principles

Example P1 Request (1,0,2) (Cont.)

Check that Request ≤ Available (that is, (1,0,2) ≤
(3,3,2) ⇒ true.

Allocation Need Available
A B C A B C A B C

P0 0 1 0 7 4 3 2 3 0
P1 3 0 2 0 2 0
P2 3 0 1 6 0 0
P3 2 1 1 0 1 1
P4 0 0 2 4 3 1

Executing safety algorithm shows that sequence
<P1, P3, P4, P0, P2> satisfies safety requirement.

Can request for (3,3,0) by P4 be granted?
Can request for (0,2,0) by P0 be granted?

page 152/20/06 CSE 30341: Operating Systems Principles

Deadlock Detection

Allow system to enter deadlock state

Detection algorithm

Recovery scheme

page 162/20/06 CSE 30341: Operating Systems Principles

Single Instance of Each Resource Type

Maintain wait-for graph
 Nodes are processes.
 Pi → Pj if Pi is waiting for Pj.

Periodically invoke an algorithm that searches for a
cycle in the graph.

An algorithm to detect a cycle in a graph requires
an order of n2 operations, where n is the number of
vertices in the graph.

page 172/20/06 CSE 30341: Operating Systems Principles

Resource-Allocation Graph Corresponding wait-for graph

Resource-Allocation Graph and Wait-for
Graph

page 182/20/06 CSE 30341: Operating Systems Principles

Several Instances of a Resource Type

Available: A vector of length m indicates the
number of available resources of each type.

Allocation: An n x m matrix defines the
number of resources of each type currently
allocated to each process.

Request: An n x m matrix indicates the
current request of each process. If Request
[ij] = k, then process Pi is requesting k more
instances of resource type. Rj.

page 192/20/06 CSE 30341: Operating Systems Principles

Detection Algorithm

1. Let Work and Finish be vectors of length m and n,
respectively Initialize:
(a) Work = Available
(b) For i = 0,1, …, n-1, if allocationi ≠ 0, then

Finish[i] = false;otherwise, Finish[i] = true.
2. Find an index i such that both:

(a) Finish[i] == false
(b) Requesti ≤ Work
If no such i exists, go to step 4.

3. Work = Work + Allocationi
Finish[i] = true
go to step 2

4. If Finish[i] == false, for some i, 1 ≤ i ≤ n, then the
system is in deadlock state. Moreover, if Finish[i]
== false, then Pi is deadlocked.

page 202/20/06 CSE 30341: Operating Systems Principles

Example of Detection Algorithm

Five processes P0 through P4; three resource types
A (7 instances), B (2 instances), and C (6
instances).

Snapshot at time T0:
AllocationRequest Available

A B C A B C A B C
P0 0 1 0 0 0 0 0 0 0
P1 2 0 0 2 0 2
P2 3 0 3 0 0 0
P3 2 1 1 1 0 0
P4 0 0 2 0 0 2

Sequence <P0, P2, P3, P1, P4> will result in Finish[i]
= true for all i

page 212/20/06 CSE 30341: Operating Systems Principles

Example (Cont.)

P2 requests an additional instance of type C.
Request

A B C
 P0 0 0 0
 P1 2 0 1
P2 0 0 1
P3 1 0 0
P4 0 0 2

State of system?
Can reclaim resources held by process P0, but insufficient

resources to fulfill other processes; requests.
Deadlock exists, consisting of processes P1, P2, P3, and

P4.

page 222/20/06 CSE 30341: Operating Systems Principles

Detection-Algorithm Usage

When, and how often, to invoke depends on:
 How often a deadlock is likely to occur?
 How many processes will need to be rolled back?

 one for each disjoint cycle

 If detection algorithm is invoked arbitrarily, there
may be many cycles in the resource graph and so
we would not be able to tell which of the many
deadlocked processes “caused” the deadlock.

page 232/20/06 CSE 30341: Operating Systems Principles

Recovery from Deadlock: Process Termination

Abort all deadlocked processes
Abort one process at a time until the deadlock

cycle is eliminated
 In which order should we choose to abort?

 Priority of the process
 How long process has computed, and how much longer

to completion
 Resources the process has used.
 Resources process needs to complete.
 How many processes will need to be terminated.
 Is process interactive or batch?

page 242/20/06 CSE 30341: Operating Systems Principles

Recovery from Deadlock: Resource Preemption

Selecting a victim – minimize cost.

Rollback – return to some safe state, restart process
for that state.

Starvation – same process may always be picked
as victim, include number of rollback in cost factor.

