
page 12/15/06 CSE 30341: Operating Systems Principles

Checkpoints

Logs keep growing. After every failure, we’d have
to go back and replay the log. This can be time
consuming.

Checkpoint frequently
 Output all log records currently in volatile storage onto

stable storage
 Output all modified data residing in volatile storage to the

stable storage
 Output a log record <checkpoint> into stable storage

On failure, search backwards till we hit the first
checkpoint. The first transaction start from the
checkpoint (going back) is the start of replay

page 22/15/06 CSE 30341: Operating Systems Principles

Serializability

Transactions can be concurrent. Such concurrency
may cause problems depending on the interleaving
of the transactions. We introduce stricter notions of
this phenomenon in order to predict system
behavior

Schedule is an execution sequence
Serial schedule: Schedule where two concurrent

transactions follow one after the other
 For two transactions T1, T2: serial schedule is T1 then T2

or T2 then T1. For n transactions, we have n! choices, all
of which is valid

 Serial schedule cannot fully utilize the system resources
and so we want to relax the schedule: non-serial
schedule

page 32/15/06 CSE 30341: Operating Systems Principles

Conflict

We define a schedule to be in conflict if they both
operate on the same data item and one of the
operations is a write

 If there is no conflict, the schedule can be
swapped.

 If after non-conflicting swaps we reach a serial
schedule, then that schedule is called conflict
serializable

page 42/15/06 CSE 30341: Operating Systems Principles

Read(A)
Write(A)
Read(B)
Write(B)

read(A)
write(A)
read(B)
write(B)

Serial schedule

Read(A)
Write(A)

read(A)
write(A)

Read(B)
Write(B)

read(B)
write(B)

Conflict serializable
schedule

page 52/15/06 CSE 30341: Operating Systems Principles

Locking protocol to enforce order

Shared: Transaction can read but not write
Exclusive: Transaction can read and write

Two phase protocol to ensure serializability:
 Growing phase - transaction can obtain but not release

locks
 Shrinking phase - transaction can release lock but not

acquire new ones

 Ensures conflict serializability not is not free from
deadlocks

page 62/15/06 CSE 30341: Operating Systems Principles

Timestamp-based Protocols

Timestamp transactions: Can be real wall clock
time or logical clock

The timestamp determines the serializability order

For each data item (Q), associate two timestamps
 W-timestamp denotes largest timestamp of any

transaction that successfully executed write(Q).
 R-timestamp for read(Q)

Suppose Ti issues read(Q):
 If TS(Ti) < W-timestamp(Q), rollback Ti
 If TS(Ti) >= W-timestamp(Q), execute Ti, R-timestamp =

maximum (R-timestamp(Q) and TS(Ti))
Similarly for Ti issuing write(Q):

page 72/15/06 CSE 30341: Operating Systems Principles

Chapter 7: Deadlocks

To develop a description of deadlocks,
which prevent sets of concurrent
processes from completing their tasks

To present a number of different methods
for preventing or avoiding deadlocks in a
computer system.

page 82/15/06 CSE 30341: Operating Systems Principles

The Deadlock Problem

A set of blocked processes each holding a
resource and waiting to acquire a resource held by
another process in the set.

 Example
 System has 2 tape drives.
 P1 and P2 each hold one tape drive and each needs

another one.

 Example
 semaphores A and B, initialized to 1

 P0 P1

wait (A); wait(B)
wait (B); wait(A)

page 92/15/06 CSE 30341: Operating Systems Principles

Bridge Crossing Example

 Traffic only in one direction.
 Each section of a bridge can be viewed as a

resource.
 If a deadlock occurs, it can be resolved if one car

backs up (preempt resources and rollback).
 Several cars may have to be backed up if a deadlock

occurs.
 Starvation is possible.

page 102/15/06 CSE 30341: Operating Systems Principles

System Model

Resource types R1, R2, . . ., Rm
CPU cycles, memory space, I/O devices

Each resource type Ri has Wi instances.
Each process utilizes a resource as follows:

 request
 use
 release

page 112/15/06 CSE 30341: Operating Systems Principles

Deadlock Characterization

 Mutual exclusion: only one process at a time can
use a resource.

 Hold and wait: a process holding at least one
resource is waiting to acquire additional resources
held by other processes.

 No preemption: a resource can be released only
voluntarily by the process holding it, after that process
has completed its task.

 Circular wait: there exists a set {P0, P1, …, P0} of
waiting processes such that P0 is waiting for a
resource that is held by P1, P1 is waiting for a resource
that is held by
P2, …, Pn–1 is waiting for a resource that is held by
Pn, and P0 is waiting for a resource that is held by P0.

Deadlock can arise if four conditions hold simultaneously.

page 122/15/06 CSE 30341: Operating Systems Principles

Resource-Allocation Graph

V is partitioned into two types:
 P = {P1, P2, …, Pn}, the set consisting of all the

processes in the system.

 R = {R1, R2, …, Rm}, the set consisting of all
resource types in the system.

 request edge – directed edge P1 → Rj

assignment edge – directed edge Rj → Pi

A set of vertices V and a set of edges E.

page 132/15/06 CSE 30341: Operating Systems Principles

Resource-Allocation Graph (Cont.)

Process

Resource Type with 4 instances

Pi requests instance of Rj

Pi is holding an instance of Rj
Pi

Pi
Rj

Rj

page 142/15/06 CSE 30341: Operating Systems Principles

Example of a Resource Allocation Graph

page 152/15/06 CSE 30341: Operating Systems Principles

Resource Allocation Graph With A Deadlock

page 162/15/06 CSE 30341: Operating Systems Principles

Resource Allocation Graph With A Cycle But No Deadlock

