
page 12/12/06 CSE 30341: Operating Systems Principles

Semaphore Implementation

Must guarantee that no two processes can
execute wait () and signal () on the same
semaphore at the same time

Thus, implementation becomes the critical
section problem where the wait and signal code
are placed in the critical section.
 Could now have busy waiting in critical section

implementation
 But implementation code is short
 Little busy waiting if critical section rarely occupied

Note that applications may spend lots of time in
critical sections and therefore this is not a good
solution.

page 22/12/06 CSE 30341: Operating Systems Principles

Semaphore Implementation with no
Busy waiting
With each semaphore there is an associated

waiting queue. Each entry in a waiting queue has
two data items:
 value (of type integer)
 pointer to next record in the list

Two operations:
 block – place the process invoking the operation on the

appropriate waiting queue
 wakeup – remove one of processes in the waiting queue

and place it in the ready queue

page 32/12/06 CSE 30341: Operating Systems Principles

Semaphore Implementation with no
Busy waiting (Cont.)
 wait (S) {

 value--;
 if (value < 0) {

 add this process to waiting queue
 block(); }

 }

 Signal (S) {
 value++;
 if (value <= 0) {

 remove a process P from the waiting queue
 wakeup(P); }

 }

page 42/12/06 CSE 30341: Operating Systems Principles

Deadlock and Starvation

 Deadlock – two or more processes are waiting indefinitely for
an event that can be caused by only one of the waiting
processes

 Let S and Q be two semaphores initialized to 1
P0 P1

 wait (S); wait (Q);
 wait (Q); wait (S);

. .

. .

. .
 signal (S); signal (Q);
 signal (Q); signal (S);

 Starvation – indefinite blocking. A process may never be
removed from the semaphore queue in which it is suspended.

page 52/12/06 CSE 30341: Operating Systems Principles

Solution to Dining Philosophers using Monitors

monitor DP
 {

enum { THINKING; HUNGRY, EATING) state [5] ;
condition self [5];

void pickup (int i) {
 state[i] = HUNGRY;
 test(i);
 if (state[i] != EATING) self [i].wait;
}

 void putdown (int i) {
 state[i] = THINKING;

 // test left and right neighbors
 test((i + 4) % 5);
 test((i + 1) % 5);

 }

page 62/12/06 CSE 30341: Operating Systems Principles

Solution to Dining Philosophers (cont)

void test (int i) {
 if ((state[(i + 4) % 5] != EATING) &&
 (state[i] == HUNGRY) &&
 (state[(i + 1) % 5] != EATING)) {
 state[i] = EATING ;

 self[i].signal () ;
 }
 }

 initialization_code() {
 for (int i = 0; i < 5; i++)
 state[i] = THINKING;
}

}

page 72/12/06 CSE 30341: Operating Systems Principles

Synchronization Examples

Solaris
Windows XP
Linux
Pthreads

page 82/12/06 CSE 30341: Operating Systems Principles

Solaris Synchronization

 Implements a variety of locks to support
multitasking, multithreading (including real-time
threads), and multiprocessing

Uses adaptive mutexes for efficiency when
protecting data from short code segments

Uses condition variables and readers-writers locks
when longer sections of code need access to data

Uses turnstiles to order the list of threads waiting
to acquire either an adaptive mutex or reader-writer
lock

page 92/12/06 CSE 30341: Operating Systems Principles

Windows XP Synchronization

Uses interrupt masks to protect access to global
resources on uniprocessor systems

Uses spinlocks on multiprocessor systems
Also provides dispatcher objects which may act as

either mutexes and semaphores
Dispatcher objects may also provide events

 An event acts much like a condition variable

page 102/12/06 CSE 30341: Operating Systems Principles

Linux Synchronization

Linux:
 disables interrupts to implement short critical sections

Linux provides:
 semaphores
 spin locks

page 112/12/06 CSE 30341: Operating Systems Principles

Pthreads Synchronization

Pthreads API is OS-independent
 It provides:

 mutex locks
 condition variables

Non-portable extensions include:
 read-write locks
 spin locks

page 122/12/06 CSE 30341: Operating Systems Principles

6.9: Atomic Transactions

 Introduce notions of databases into operating
systems
 Challenge is that some of these operations are “heavy”

and not necessarily fast
Transaction:

 A collection of operations that performs a single logical
function. For example, transferring money from your
checking account to savings account will be one single
transaction

 Transactions are atomic with all are nothing semantics
 Committed transactions means, all the operations went

through
 Aborted transactions means, none of them went through
 You cannot be in a state where the money came out of your

checking account but didn’t go into savings accounts
 When a transaction aborts, we roll back

page 132/12/06 CSE 30341: Operating Systems Principles

Storage states

Storage to implement transactions:
 Volatile storage: Does not survive system crash
 Nonvolatile storage: Survives system crashes
 Stable storage: Information is “never” lost. Uses

nonvolatile storage and replication

Log-based recovery:
 Write-ahead logging, where we write all operations into a

log in stable storage
 <transaction name, data item name, old value, new value>

 Transaction is made up of
 <Ti, starts> set of transaction logs <Ti, commit>
 If both starts and commit is there, then the transaction is

committed. Else, it is rolled back
 Logs are idempotent, you can apply it again and again in

the same order without side effects

page 142/12/06 CSE 30341: Operating Systems Principles

Checkpoints

Logs keep growing. After every failure, we’d have
to go back and replay the log. This can be time
consuming.

Checkpoint frequently
 Output all log records currently in volatile storage onto

stable storage
 Output all modified data residing in volatile storage to the

stable storage
 Output a log record <checkpoint> into stable storage

On failure, search backwards till we hit the first
checkpoint. The first transaction start from the
checkpoint (going back) is the start of replay

page 152/12/06 CSE 30341: Operating Systems Principles

Serializability

Transactions can be concurrent. Such concurrency
may cause problems depending on the interleaving
of the transactions. We introduce stricter notions of
this phenomenon in order to predict system
behavior

Schedule is an execution sequence
Serial schedule: Schedule where two concurrent

transactions follow one after the other
 For two transactions T1, T2: serial schedule is T1 then T2

or T2 then T1. For n transactions, we have n! choices, all
of which is valid

 Serial schedule cannot fully utilize the system resources
and so we want to relax the schedule: non-serial
schedule

page 162/12/06 CSE 30341: Operating Systems Principles

Conflict

We define a schedule to be in conflict if they both
operate on the same data item and one of the
operations is a write

 If there is no conflict, the schedule can be
swapped.

 If after non-conflicting swaps we reach a serial
schedule, then that schedule is called conflict
serializable

page 172/12/06 CSE 30341: Operating Systems Principles

Read(A)
Write(A)
Read(B)
Write(B)

read(A)
write(A)
read(B)
write(B)

Serial schedule

Read(A)
Write(A)

read(A)
write(A)

Read(B)
Write(B)

read(B)
write(B)

Conflict serializable
schedule

