
page 12/12/06 CSE 30341: Operating Systems Principles

Semaphore Implementation

Must guarantee that no two processes can
execute wait () and signal () on the same
semaphore at the same time

Thus, implementation becomes the critical
section problem where the wait and signal code
are placed in the critical section.
 Could now have busy waiting in critical section

implementation
 But implementation code is short
 Little busy waiting if critical section rarely occupied

Note that applications may spend lots of time in
critical sections and therefore this is not a good
solution.

page 22/12/06 CSE 30341: Operating Systems Principles

Semaphore Implementation with no
Busy waiting
With each semaphore there is an associated

waiting queue. Each entry in a waiting queue has
two data items:
 value (of type integer)
 pointer to next record in the list

Two operations:
 block – place the process invoking the operation on the

appropriate waiting queue
 wakeup – remove one of processes in the waiting queue

and place it in the ready queue

page 32/12/06 CSE 30341: Operating Systems Principles

Semaphore Implementation with no
Busy waiting (Cont.)
 wait (S) {

 value--;
 if (value < 0) {

 add this process to waiting queue
 block(); }

 }

 Signal (S) {
 value++;
 if (value <= 0) {

 remove a process P from the waiting queue
 wakeup(P); }

 }

page 42/12/06 CSE 30341: Operating Systems Principles

Deadlock and Starvation

 Deadlock – two or more processes are waiting indefinitely for
an event that can be caused by only one of the waiting
processes

 Let S and Q be two semaphores initialized to 1
P0 P1

 wait (S); wait (Q);
 wait (Q); wait (S);

. .

. .

. .
 signal (S); signal (Q);
 signal (Q); signal (S);

 Starvation – indefinite blocking. A process may never be
removed from the semaphore queue in which it is suspended.

page 52/12/06 CSE 30341: Operating Systems Principles

Solution to Dining Philosophers using Monitors

monitor DP
 {

enum { THINKING; HUNGRY, EATING) state [5] ;
condition self [5];

void pickup (int i) {
 state[i] = HUNGRY;
 test(i);
 if (state[i] != EATING) self [i].wait;
}

 void putdown (int i) {
 state[i] = THINKING;

 // test left and right neighbors
 test((i + 4) % 5);
 test((i + 1) % 5);

 }

page 62/12/06 CSE 30341: Operating Systems Principles

Solution to Dining Philosophers (cont)

void test (int i) {
 if ((state[(i + 4) % 5] != EATING) &&
 (state[i] == HUNGRY) &&
 (state[(i + 1) % 5] != EATING)) {
 state[i] = EATING ;

 self[i].signal () ;
 }
 }

 initialization_code() {
 for (int i = 0; i < 5; i++)
 state[i] = THINKING;
}

}

page 72/12/06 CSE 30341: Operating Systems Principles

Synchronization Examples

Solaris
Windows XP
Linux
Pthreads

page 82/12/06 CSE 30341: Operating Systems Principles

Solaris Synchronization

 Implements a variety of locks to support
multitasking, multithreading (including real-time
threads), and multiprocessing

Uses adaptive mutexes for efficiency when
protecting data from short code segments

Uses condition variables and readers-writers locks
when longer sections of code need access to data

Uses turnstiles to order the list of threads waiting
to acquire either an adaptive mutex or reader-writer
lock

page 92/12/06 CSE 30341: Operating Systems Principles

Windows XP Synchronization

Uses interrupt masks to protect access to global
resources on uniprocessor systems

Uses spinlocks on multiprocessor systems
Also provides dispatcher objects which may act as

either mutexes and semaphores
Dispatcher objects may also provide events

 An event acts much like a condition variable

page 102/12/06 CSE 30341: Operating Systems Principles

Linux Synchronization

Linux:
 disables interrupts to implement short critical sections

Linux provides:
 semaphores
 spin locks

page 112/12/06 CSE 30341: Operating Systems Principles

Pthreads Synchronization

Pthreads API is OS-independent
 It provides:

 mutex locks
 condition variables

Non-portable extensions include:
 read-write locks
 spin locks

page 122/12/06 CSE 30341: Operating Systems Principles

6.9: Atomic Transactions

 Introduce notions of databases into operating
systems
 Challenge is that some of these operations are “heavy”

and not necessarily fast
Transaction:

 A collection of operations that performs a single logical
function. For example, transferring money from your
checking account to savings account will be one single
transaction

 Transactions are atomic with all are nothing semantics
 Committed transactions means, all the operations went

through
 Aborted transactions means, none of them went through
 You cannot be in a state where the money came out of your

checking account but didn’t go into savings accounts
 When a transaction aborts, we roll back

page 132/12/06 CSE 30341: Operating Systems Principles

Storage states

Storage to implement transactions:
 Volatile storage: Does not survive system crash
 Nonvolatile storage: Survives system crashes
 Stable storage: Information is “never” lost. Uses

nonvolatile storage and replication

Log-based recovery:
 Write-ahead logging, where we write all operations into a

log in stable storage
 <transaction name, data item name, old value, new value>

 Transaction is made up of
 <Ti, starts> set of transaction logs <Ti, commit>
 If both starts and commit is there, then the transaction is

committed. Else, it is rolled back
 Logs are idempotent, you can apply it again and again in

the same order without side effects

page 142/12/06 CSE 30341: Operating Systems Principles

Checkpoints

Logs keep growing. After every failure, we’d have
to go back and replay the log. This can be time
consuming.

Checkpoint frequently
 Output all log records currently in volatile storage onto

stable storage
 Output all modified data residing in volatile storage to the

stable storage
 Output a log record <checkpoint> into stable storage

On failure, search backwards till we hit the first
checkpoint. The first transaction start from the
checkpoint (going back) is the start of replay

page 152/12/06 CSE 30341: Operating Systems Principles

Serializability

Transactions can be concurrent. Such concurrency
may cause problems depending on the interleaving
of the transactions. We introduce stricter notions of
this phenomenon in order to predict system
behavior

Schedule is an execution sequence
Serial schedule: Schedule where two concurrent

transactions follow one after the other
 For two transactions T1, T2: serial schedule is T1 then T2

or T2 then T1. For n transactions, we have n! choices, all
of which is valid

 Serial schedule cannot fully utilize the system resources
and so we want to relax the schedule: non-serial
schedule

page 162/12/06 CSE 30341: Operating Systems Principles

Conflict

We define a schedule to be in conflict if they both
operate on the same data item and one of the
operations is a write

 If there is no conflict, the schedule can be
swapped.

 If after non-conflicting swaps we reach a serial
schedule, then that schedule is called conflict
serializable

page 172/12/06 CSE 30341: Operating Systems Principles

Read(A)
Write(A)
Read(B)
Write(B)

read(A)
write(A)
read(B)
write(B)

Serial schedule

Read(A)
Write(A)

read(A)
write(A)

Read(B)
Write(B)

read(B)
write(B)

Conflict serializable
schedule

