
page 12/10/06 CSE 30341: Operating Systems Principles

Classic synchronization problems

Bounded buffer problem
Readers-writer problem
Dining-philosophers problem
The Sleeping Barber problem

page 22/10/06 CSE 30341: Operating Systems Principles

Bounded buffer problem

N element buffer, producer and consumers work
with this buffer

Consumers cannot proceed till producer produced
something

Producer cannot proceed if buffer == N

page 32/10/06 CSE 30341: Operating Systems Principles

Reader-writer problem

Shared database, any number of readers can
concurrently read content. Only one writer can
write at any one time (with exclusive access)

Variations:
 No reader will be kept waiting unless a writer has already

received exclusive write permissions
 Once a writer is ready, it gets exclusive permission as

soon as possible. Once a writer is waiting, no further
reads are allowed

page 42/10/06 CSE 30341: Operating Systems Principles

Dining philosopher’s problem

 five philosophers think for some time and then eat
 Philosophers can only eat if they have both their left and

right chopsticks/forks/ at the same time

page 52/10/06 CSE 30341: Operating Systems Principles

The Sleeping Barber Problem

A barbershop consists of a waiting room with N
chairs, and the barber room containing the barber
chair. If there are no customers to be served the
barber goes to sleep. If a customer enters the
barbershop and all chairs are busy, then the
customer leaves the shop. If the barber is busy,
then the customer sits in one of the available free
chairs. If the barber is asleep, the customer wakes
the barber up.

page 62/10/06 CSE 30341: Operating Systems Principles

Deadlock and starvation

Deadlock: processes waiting indefinitely with no
chance of making progress

Starvation: a process waits for a long time to make
progress

page 72/10/06 CSE 30341: Operating Systems Principles

Semaphore synchronization primitive

TestAndSet are hard to program for end users
 Introduce a simple function called semaphore:

 Semaphore is an integer, S
 Only legal operations on S are:

 Wait() [atomic] - if S > 0, decrement S else loop
 Signal() [atomic] - increment S

 wait (S) {
 while S <= 0

 ; // no-op
 S--;
 }
 signal (S) {
 S++;
 }
 Counting (S: is unrestricted), binary (mutex lock) (S: 0, 1)

page 82/10/06 CSE 30341: Operating Systems Principles

Semaphore usage example

Assume synch is initialized to 0
 P2:

Wait(synch);
Statements2;

 P1:
Statements1;
signal(synch);

page 92/10/06 CSE 30341: Operating Systems Principles

Monitors

 A high-level abstraction that provides a convenient and
effective mechanism for process synchronization

 Only one process may be active within the monitor at a time
monitor monitor-name
{

// shared variable declarations
procedure P1 (…) { …. }

…
procedure Pn (…) {……}

 Initialization code (….) { … }
…

}
}

 In Java, declaring a method synchronized to get monitor like
behavior
 What happens to shared variables which are not protected by

this monitor?

page 102/10/06 CSE 30341: Operating Systems Principles

Condition Variables

condition x, y;

Two operations on a condition variable:
 x.wait () – a process that invokes the operation is
 suspended.
 x.signal () – resumes one of processes (if any) that
 invoked x.wait ()

