
page 11/30/05 CSE 364: Computer Networks

Error detection: Outline

 In the last class, we looked at the problem of
encoding bits on the wire and framing to delineate
when a frame begins and ends.

Today we look at how we detect errors introduced
by the network
 Mechanisms depend on how much computational

overhead is tolerable, how much extra bits are wasted
and what types of errors (number of errors, error types
etc.) have to be detected

First problem is to detect errors. The second
problem is to correct errors
 Correction can be achieved by resending the frame
 Or by sending extra bits so that the receiver can

reconstruct the erroneous frame



page 21/30/05 CSE 364: Computer Networks

Error detection and correction.

Parity or checksums
 Send additional bits that can help identify if there was an

error in the transmission
 The goal is to keep this extra bits as small as possible

One dimensional parity
 Add one extra bit to a 7-bit code to keep either a odd- or

even- number of 1s in a byte

Two dimensional parity
 Calculates parity across all bit (in a given bit position) in

the frame
 This uses an extra parity byte



page 31/30/05 CSE 364: Computer Networks

Two dimensional parity

 It can be shown that two
dimensional parity
catches all 1, 2 and 3 bit
errors and most 4-bit
errors

 In this example, we
added 14 bits of
redundant information to
a 42 bit message

1011110 1

1101001 0

0101001 1

1011111 0

0110100 1

0001110 1

1111011 0

Parity
bits

Parity
byte

Data



page 41/30/05 CSE 364: Computer Networks

Internet checksum

Add all the bytes and then transmit the sum.
 Receiver does the same summation and checks the

sum. If they don’t match, then there was an error
 Internet checksum:

 Consider data as 16-bit integers. Add them using 16-bit
ones complement arithmetic
 In ones complement, negative number is represented each

bit inverted
 Ones complement addition, carryout from most significant

bit is added to reslt
 Take ones complement of the result
 Resulting 16 bit number is the checksum

Overhead is 16 bits per message
 Internet checksum is simple but does not detect

many errors - used in conjunction with others



page 51/30/05 CSE 364: Computer Networks

Cyclic Redundancy Check (CRC)

Fairly intensive computation
 32 bit CRC can check errors for a longer message
 Tradeoff between computational complexity and check

requirements
 CRCs are based on finite fields

Assume (n+1) bit message as a polynomial of
degree n. Choose a CRC polynomial C(x)
 When transmitting message M(x) of size, transmit k extra

bits such that the new message P(x) is exactly divisible
by C(x)

 Receive does the same, divide P(x) with C(x). If there is
no remainder, then there was no errors



page 61/30/05 CSE 364: Computer Networks

Polynomial arithmetic modulo 2
 If polynomials of same degree, then they device
 Subtraction is basically a xor operation

 Xor is 1 if the two bits are different (0 & 1 or 1 & 0)
 Consider M(x)=1001101 and C(x)=1101 and k=3

Generator 1101
11111001
10011010000 Message
1101

1001
1101

1000
1101

1011
1101

1100
1101

1000
1101

101 Remainder



page 71/30/05 CSE 364: Computer Networks

Key is to choose C(x) such that common errors
are caught
 CRC-8: 100000111

Each CRC function has different strengths in
detecting error conditions
 E.g. all single-bit errors, as long as xk and x0 terms have

nonzero coefficient

CRC checksums are easily implemented in
hardware



page 81/30/05 CSE 364: Computer Networks

Take away message

Choosing the right error checking mechanism is a
tradeoff between computational complexity and
errors that you want to detect

Multiple layers will do their own error checking,
improving error detection



page 91/30/05 CSE 364: Computer Networks

Questions

What happens if the error detection mechanism
did not detect a particular error?
 Is it possible at all?

Going back to yesterdays work:

 What bits should the CRC cover?
 Should CRC cover the sequence header? Sequence

trailer? Why?

Header Body

8 16 16 8

CRCBeginning
sequence

Ending
sequence


