
page 11/30/05 CSE 364: Computer Networks

Error detection: Outline

 In the last class, we looked at the problem of
encoding bits on the wire and framing to delineate
when a frame begins and ends.

Today we look at how we detect errors introduced
by the network
 Mechanisms depend on how much computational

overhead is tolerable, how much extra bits are wasted
and what types of errors (number of errors, error types
etc.) have to be detected

First problem is to detect errors. The second
problem is to correct errors
 Correction can be achieved by resending the frame
 Or by sending extra bits so that the receiver can

reconstruct the erroneous frame



page 21/30/05 CSE 364: Computer Networks

Error detection and correction.

Parity or checksums
 Send additional bits that can help identify if there was an

error in the transmission
 The goal is to keep this extra bits as small as possible

One dimensional parity
 Add one extra bit to a 7-bit code to keep either a odd- or

even- number of 1s in a byte

Two dimensional parity
 Calculates parity across all bit (in a given bit position) in

the frame
 This uses an extra parity byte



page 31/30/05 CSE 364: Computer Networks

Two dimensional parity

 It can be shown that two
dimensional parity
catches all 1, 2 and 3 bit
errors and most 4-bit
errors

 In this example, we
added 14 bits of
redundant information to
a 42 bit message

1011110 1

1101001 0

0101001 1

1011111 0

0110100 1

0001110 1

1111011 0

Parity
bits

Parity
byte

Data



page 41/30/05 CSE 364: Computer Networks

Internet checksum

Add all the bytes and then transmit the sum.
 Receiver does the same summation and checks the

sum. If they don’t match, then there was an error
 Internet checksum:

 Consider data as 16-bit integers. Add them using 16-bit
ones complement arithmetic
 In ones complement, negative number is represented each

bit inverted
 Ones complement addition, carryout from most significant

bit is added to reslt
 Take ones complement of the result
 Resulting 16 bit number is the checksum

Overhead is 16 bits per message
 Internet checksum is simple but does not detect

many errors - used in conjunction with others



page 51/30/05 CSE 364: Computer Networks

Cyclic Redundancy Check (CRC)

Fairly intensive computation
 32 bit CRC can check errors for a longer message
 Tradeoff between computational complexity and check

requirements
 CRCs are based on finite fields

Assume (n+1) bit message as a polynomial of
degree n. Choose a CRC polynomial C(x)
 When transmitting message M(x) of size, transmit k extra

bits such that the new message P(x) is exactly divisible
by C(x)

 Receive does the same, divide P(x) with C(x). If there is
no remainder, then there was no errors



page 61/30/05 CSE 364: Computer Networks

Polynomial arithmetic modulo 2
 If polynomials of same degree, then they device
 Subtraction is basically a xor operation

 Xor is 1 if the two bits are different (0 & 1 or 1 & 0)
 Consider M(x)=1001101 and C(x)=1101 and k=3

Generator 1101
11111001
10011010000 Message
1101

1001
1101

1000
1101

1011
1101

1100
1101

1000
1101

101 Remainder



page 71/30/05 CSE 364: Computer Networks

Key is to choose C(x) such that common errors
are caught
 CRC-8: 100000111

Each CRC function has different strengths in
detecting error conditions
 E.g. all single-bit errors, as long as xk and x0 terms have

nonzero coefficient

CRC checksums are easily implemented in
hardware



page 81/30/05 CSE 364: Computer Networks

Take away message

Choosing the right error checking mechanism is a
tradeoff between computational complexity and
errors that you want to detect

Multiple layers will do their own error checking,
improving error detection



page 91/30/05 CSE 364: Computer Networks

Questions

What happens if the error detection mechanism
did not detect a particular error?
 Is it possible at all?

Going back to yesterdays work:

 What bits should the CRC cover?
 Should CRC cover the sequence header? Sequence

trailer? Why?

Header Body

8 16 16 8

CRCBeginning
sequence

Ending
sequence


