Multicast

- Client will send to multicast address
- Anyone who is waiting for the multicast group can see this message
- mclient.c
- multicast.c

Outline: Network architecture

Definitions: Node, link, switch, Internetwork

 Organization: Layer, protocols, encapsulating higher level messages into lower level messages

Network Architecture

- ▶ Node: communications end-point, e.g. computers
- Link: network communication
 - Point-to-point connects two nodes
 - Multiple access connects many nodes

Switched networks

Its not possible to have all nodes be connected to all other nodes. Use switches that forward traffic from one cluster to another

Internetwork - Network of networks

Connect networks to build more complex networks

Switching mechanisms

- Describes how the switching of networks works
 - Circuit switched: establish a connection (circuit) between nodes that are communicating
 - E.g. telephones
 - Packet switched: each packet is independently switched
 - Packets are stored-and-forwarded by the switches

Multiplexing multiple flows on a link

Logically multiplex multiple links over a single physical link.

Network Architecture

- Layering to provide higher level abstractions on top of lower level networks
- The layers implement a protocol
 - Service and peer interfaces to communication across protocol layers and nodes

Application programs

Process-to-process channel

Host-to-host connectivity

Hardware

Encapsulation

Higher level messages are encapsulated inside lower level messages

OSI layers

Seven layer OSI Protocol

Internet Protocol layer

Outline: Performance

▶ Bandwidth, latency, bandwidth delay product, jitter

Bandwidth and Latency

- Bandwidth: amount of data transmitted in a given duration
 - E.g. 100 Mbps (million bits per second)
- Latency: time to send bits from source to destination
 - RTT: Round trip time is measurable
 - RTT does not depend on b/w

Latency = Propagation + Transmit + Queueing delay Propagation = Distance/(Speed of light in medium) Transmit = Size/Bandwidth

Bandwidth x delay product

Assume the link as a pipe. Up to bandwidth x delay will be in the link before it is received on the other side. Assume 100 ms delay

- Using a 1 Mbps packet in 1 Gbps link wastes most of the pipe if you are waiting for confirmation before you send the next packet
- Important to keep the pipe full for better link utilization
- The bandwidth x delay product is the basis for a lot of networking tricks
- Jitter: induced interpacket delay

Examples

- Satellite link: high b/w, high latency
- Dialup: low b/w, low latency
- Bandwidth tells you how fast you can transmit data (once the first bit - which is measured by latency) is received
- http, ftp: high bandwidth
- Video conferencing: low latency and low jitter
- Streaming video: low jitter

