Chapter 8: Security

Outline

- Encryption Algorithms only recipient can open message
- Authentication Protocols only sender could've sent it
- Message Integrity Protocols message was not tampered
- Key Distribution how to trust entities
- Firewalls devices to filter unwanted traffic

Overview

- Cryptography functions
 - Secret key (e.g., DES)
 - Public key (e.g., RSA)
 - Message digest (e.g., MD5)
- Security services
 - Privacy: preventing unauthorized release of information
 - Authentication: verifying identity of the remote participant
 - Integrity: making sure message has not been altered

Secret Key (DES)

Public Key (RSA)

Encryption & Decryption

$$c = m^e mod n$$

 $m = c^d mod n$

Message Digest

- Cryptographic checksum
 - just as a regular checksum protects the receiver from accidental changes to the message, a cryptographic checksum protects the receiver from malicious changes to the message.
- One-way function
 - given a cryptographic checksum for a message, it is virtually impossible to figure out what message produced that checksum; it is not computationally feasible to find two messages that hash to the same cryptographic checksum.
- Relevance
 - if you are given a checksum for a message and you are able to compute exactly the same checksum for that message, then it is highly likely this message produced the checksum you were given.

Authentication Protocols

Three-way handshake

Trusted third party (Kerberos)

Public key authentication

Message Integrity Protocols

- Digital signature using RSA
 - special case of a message integrity where the code can only have been generated by one participant
 - compute signature with private key and verify with public key
- Keyed MD5
 - sender: m + MD5(m + k) + E(k, private)
 - receiver
 - recovers random key using the sender's public key
 - applies MD5 to the concatenation of this random key message
- MD5 with RSA signature
 - sender: m + E(MD5(m), private)
 - receiver
 - decrypts signature with sender's public key
 - compares result with MD5 checksum sent with message

Key Distribution

Certificate

- special type of digitally signed document:
 - "I certify that the public key in this document belongs to the entity named in this document, signed X."
- the name of the entity being certified
- the public key of the entity
- the name of the certified authority
- a digital signature

Certified Authority (CA)

- administrative entity that issues certificates
- useful only to someone that already holds the CA's public key.

Key Distribution (cont)

- Chain of Trust
 - if X certifies that a certain public key belongs to Y, and Y certifies that another public key belongs to Z, then there exists a chain of certificates from X to Z
 - someone that wants to verify Z's public key has to know X's public key and follow the chain
- Certificate Revocation List

IPSEC - Secure communications in IP

IPSec comes in two forms

- AH provides a keyed hash and authentication data
 - Ensures data comes from peer router (authentication)
 - Detects alterations (keyed hash)
 - But does not encrypt for confidentiality
- ESP encrypts
 - Two sub-modes: tunnel and transport
 - In tunnel mode, the new IP header hides source and destination addresses: keeps server address confidential
 - Keyed hash for detecting alterations
 - Authentication
 - Encryption

Firewalls

- Filter-Based Solution
 - example

(192.12.13.14, 1234, 128.7.6.5, 80) (*,*, 128.7.6.5, 80)

- default: forward or not forward?
- how dynamic?
- stateful

Proxy-Based Firewalls

- Problem: complex policy
- Example: web server

Solution: proxy

- ▶ Designative parentive of assical
- ▶ Limitations: attacks from within

Denial of Service

- Attacks on end hosts
 - SYN attack
- Attacks on routers
 - pollute route cache
- Authentication attacks
- Distributed DoS attacks

