Review: Network link technologies

- 1. What happens when client send packets back-to-back?
 - What happens when the network is saturated?
- 2. What about bandwidth/latency/jitter?
- 3. Nature of packet loss?
 - Ethernet: CSMA/CD collisions
- Wireless LAN: CSMA/CA wireless channel
- Wireless Cellular handovers
- Point-to-point dialup -
- Token-Ring 4/16 Mbps fair access
- ATM cell based 155 Mbps pre-determined

TCP components

- Sliding window protocol to achieve reliable transmission
 - Ideally, bandwidth x delay product worth window
 - RTT estimation algorithms
 - Advertised window for flow control receiver restriction
 - Congestion window for congestion network restriction
 - Basically, advertised window and congestion window reduces the amount of data that we can send
- ▶ TCP uses end-point probing to learn about network
 - Causing congestion creates implicit feedback cannot expect explicit feedback in the Internet
 - Nice = slow to detect network limits, fast = congestion
 - When congestion happens, be nice and backoff

TCP congestion response

- AIMD increment slowly to probe network, backoff multiplicatively when congestion happens
- Slow Start increment multiplicatively -> causing congestion sooner
- Using hybrid, slow start to quickly catchup (like in the beginning) and then use AIMD when fine tuning

Other TCP mechanisms

- Sequence number space is important to avoid packets from previous (independent) TCP connections
 - Initial sequence no. chosen to be less likely to overlap
 - Sequence number space (+ newer timestamp)
 - SYN+SYN/ACK
 - FIN can be initiated by either side
- SACK and D-SACK are newer mechanisms to allow the receiver to let the sender know what packets have been received (to avoid unnecessary retransmissions in the case of loss)

TCP and Networks

- 1. Sequence number management
 - Initial sequence number
 - total space
- 2. Handshakes
- 3. AIMD or Slow-Start
- 4. SACK/D-SACK
 - Ethernet
 - Wireless LAN
 - Cellular
 - Token Ring
 - ATM
 - dialup

TCP scenarios

- High speed web server clients:
 - Dialup user bandwidth is low
 - Wireless lan user
 - Network errors are bursty
 - Networks can be lossy
 - ADSL user
 - TCP paces itself with ACKs
 - Downlink != uplink
 - Cellular user
 - Handoff delays can throw off TCP
 - Satellite user
 - Asymmetric
 - High bandwidth x delay networks

Quality of Service

Some applications require some sort of guarantee of what kind of service that they can get

Approaches to QoS

- ▶ Fine-grained approaches: QoS on per flow basis
 - E.g. RSVP
- Coarse-grained approaches: provides QoS for large class of aggregated traffic
 - Differentiated services

Quality of Service

- Outline
 - Realtime Applications
 - Networking with specified delay components
 - Integrated Services
 - Per flow QoS
 - Differentiated Services
 - QoS for aggregated traffic

Streaming Audio

The media player buffers input from the media server and plays from the buffer rather than directly from the network.

Realtime Applications

- Require "deliver on time" assurances
 - must come from inside the network

- sample voice once every 125µs
 - each sample has a playback time
 - packets experience variable delay in network
 - add constant factor to playback time: playback point
 - Similar to skip protection in portable CD players

Multimedia care about delay and jitter (variability within delay)

Time

Example Distribution of Delays

- What is a good delay? 200 msec
- Not acceptable for chat application

Taxonomy of real time applications

QoS Approaches

- ▶ Fine grained individual application or flows
 - Intserv
 - E.g. for my video chat application
- Coarse grained aggregated traffic
 - Diffserv
 - E.g. All traffic from CSE (costs \$\$)

Integrated Services

- ▶ IETF 1995-97 time frame
- Service Classes
 - guaranteed
 - controlled-load (tolerant, adaptive applications)
 - Simulates lightly loaded link
- Mechanisms
 - signaling protocol: signals required service
 - admission control: rejects traffic that cannot be serviced
 - Policing: make sure that senders stick to agreement
 - packet scheduling: manage how packets are queued

Flowspec

- Rspec: describes service requested from network
 - controlled-load: none
 - guaranteed: delay target
- Tspec: describes flow's traffic characteristics
 - average bandwidth + burstiness: token bucket filter
 - token rate r and bucket depth B
 - must have a token to send a byte
 - must have n tokens to send n bytes
 - start with no tokens
 - accumulate tokens at rate of r per second
 - can accumulate no more than B tokens

Per-Router Mechanisms

- Admission Control
 - decide if a new flow can be supported
 - answer depends on service class
 - not the same as policing
- Packet Processing
 - classification: associate each packet with the appropriate reservation
 - scheduling: manage queues so each packet receives the requested service

Reservation Protocol

- Called signaling in ATM
- Proposed Internet standard: RSVP
- Consistent with robustness of today's connectionless model
- Uses soft state (refresh periodically)
- Designed to support multicast
- Receiver-oriented
- Two messages: PATH and RESV
- Source transmits PATH messages every 30 seconds
- Destination responds with RESV message
- Merge requirements in case of multicast
- Can specify number of speakers

RSVP Example (multicast)

RSVP versus ATM (Q.2931)

RSVP

- receiver generates reservation
- soft state (refresh/timeout)
- separate from route establishment
- QoS can change dynamically
- receiver heterogeneity

ATM

- sender generates connection request
- hard state (explicit delete)
- concurrent with route establishment
- QoS is static for life of connection
- uniform QoS to all receivers

Differentiated Services

- Problem with IntServ: scalability, IntServ operates in a per-flow basis
- Idea: segregate packets into a small number of classes
 - e.g., premium vs best-effort
- Packets marked according to class at edge of network (ND will mark certain packets)
- Core routers implement some per-hop-behavior (PHB)
 - Example: Expedited Forwarding (EF)
 - rate-limit EF packets at the edges
 - PHB implemented with class-based priority queues or Weighted Fair Queue (WFQ)

DiffServ (cont)

- Assured Forwarding (AF)
 - customers sign service agreements with ISPs
 - edge routers mark packets as being "in" or "out" of profile
 - core routers run RIO: RED with in/out

