Review: Network link technologies

- 1. What happens when client send packets back-to-back?
 - What happens when the network is saturated?
- 2. What about bandwidth/latency/jitter?
- 3. Nature of packet loss?
 - Ethernet: CSMA/CD collisions
 - Wireless LAN: CSMA/CA wireless channel
 - Wireless Cellular handovers
 - Point-to-point dialup -
 - Token-Ring 4/16 Mbps fair access
 - ATM cell based 155 Mbps pre-determined

TCP components

- Sliding window protocol to achieve reliable transmission
 - Ideally, bandwidth x delay product worth window
 - RTT estimation algorithms
 - Advertised window for flow control receiver restriction
 - Congestion window for congestion network restriction
 - Basically, advertised window and congestion window reduces the amount of data that we can send
- ▶ TCP uses end-point probing to learn about network
 - Causing congestion creates implicit feedback cannot expect explicit feedback in the Internet
 - Nice = slow to detect network limits, fast = congestion
 - When congestion happens, be nice and backoff

TCP congestion response

- AIMD increment slowly to probe network, backoff multiplicatively when congestion happens
- Slow Start increment multiplicatively -> causing congestion sooner
- Using hybrid, slow start to quickly catchup (like in the beginning) and then use AIMD when fine tuning

Other TCP mechanisms

- Sequence number space is important to avoid packets from previous (independent) TCP connections
 - Initial sequence no. chosen to be less likely to overlap
 - Sequence number space (+ newer timestamp)
 - SYN+SYN/ACK
 - FIN can be initiated by either side
- SACK and D-SACK are newer mechanisms to allow the receiver to let the sender know what packets have been received (to avoid unnecessary retransmissions in the case of loss)

TCP and Networks

- 1. Sequence number management
 - Initial sequence number
 - total space
- 2. Handshakes
- 3. AIMD or Slow-Start
- 4. SACK/D-SACK
 - Ethernet
 - Wireless LAN
 - Cellular
 - Token Ring
 - ATM
 - dialup

TCP scenarios

- High speed web server clients:
 - Dialup user bandwidth is low
 - Wireless lan user
 - Network errors are bursty
 - Networks can be lossy
 - ADSL user
 - TCP paces itself with ACKs
 - Downlink != uplink
 - Cellular user
 - Handoff delays can throw off TCP
 - Satellite user
 - Assymetric
 - High bandwidth x delay networks

