Fast Retransmit

» Problem: coarse-
grain TCP
timeouts lead to
idle periods

» Fast retransmit:
use duplicate
ACKs to trigger
retransmission

Sender

Packet 1
Packet 2

Packet 3 \\\\\ﬁx

Packet 4

Packet 5
Packet 6

Retransmit
packet 3

CSE 364: Computer Networks

Receiver

ACK 1
ACK 2

ACK 2

ACK 2
ACK 2

ACK 6

page 1

- Fast Retransmit

» If we get 3 duplicate acks for segment N
B Retransmit segment N
B Set ssthresh to 0.5*cwnd
B Set cwnd to ssthresh + 3

» For every subsequent duplicate ack
B Increase cwnd by 1 segment

» When new ack received
B Reset cwnd to ssthresh (resume congestion avoidance)

I 4/7/05 CSE 364: Computer Networks page 2

- Congestion Avoidance

» TCP needs to create congestion to find the point
where congestion occurs

» Coarse grained timeout as loss indicator

» If loss occurs when cwnd = W
B Network can absorb 0.5W ~ W segments
B Set cwnd to 0.5W (multiplicative decrease)
B Needed to avoid exponential queue buildup
» Upon receiving ACK
B Increase cwnd by 1/cwnd (additive increase)
B Multiplicative increase -> non-convergence

I 4/7/05 CSE 364: Computer Networks page 3

Slow Start and Congestion Avoidance

» If packet is lost we lose our self clocking as well

B Need to implement slow-start and congestion avoidance
together

» When timeout occurs set ssthresh to 0.5w
B If cwnd < ssthresh, use slow start
B Else use congestion avoidance

I 4/7/05 CSE 364: Computer Networks page 4

- Fast Recovery

» In congestion avoidance mode, if duplicate acks
are received, reduce cwnd to half

» If n successive duplicate acks are received, we
know that receiver got n segments after lost
segment:

B Advance cwnd by that number

I 4/7/05 CSE 364: Computer Networks page 5

Results

L J
AR OCRRRERAR CARRSRCAREARCMSR RN AR EQUEREATE - AOORARARASAR SRR PR AR A1

—

1 —

| | l il l
1.0 2.0 3.0 4.0 2.0

» Fast recovery
B skip the slow start phase

Bm go directly to half the last successful
CongestionWindow (ssthresh)

CSE 364: Computer Networks

| |
6.0 7.0

page 6

-I Impact of Timeouts

» Timeouts can cause sender to

m Slow start
B Retransmit a possibly large portion of the window

» Bad for lossy high bandwidth-delay paths

» Can leverage duplicate acks to:
B Retransmit fewer segments (fast retransmit)
B Advance cwnd more aggressively (fast recovery)

I 4/7/05 CSE 364: Computer Networks page 7

T

» Three way handshake to initiate TCP. Either side
can tear down connection using FIN sequence.

» Initial sequence number chosen to avoid packets
from earlier incarnations

» AIMD to slowly probe network. Slow start to speed
up the probing process (at the expense of hard
congestion for the last step). Use ssthresh to
decide whether to restart slow start or AIMD after
loss

» Fast retransmit by inferring duplicate ACKs = lost
packet, Fast recovery by inferring duplicate ACKs
= increasing CWND

4/7/05 CSE 364: Computer Networks page 8

-I TCP Extensions

» Implemented using TCP options
B Timestamp
m Protection from sequence number wraparound
B Large windows

I 4/7/05 CSE 364: Computer Networks page 9

-I Timestamp Extension

» Used to improve timeout mechanism by more
accurate measurement of RTT

» When sending a packet, insert current timestamp
into option

» Receiver echoes timestamp in ACK

4/7/05 CSE 364: Computer Networks page 10

Protection Against Wrap Around

» 32-bit SequenceNum

Bandwidth

Time Until Wrap Around

T1 (1.5 Mbps)
Ethernet (10 Mbps)
T3 (45 Mbps)

FDDI (100 Mbps)
STS-3 (155 Mbps)
STS-12 (622 Mbps)
STS-24 (1.2 Gbps)

6.4 hours
57 minutes
13 minutes
6 minutes
4 minutes
55 seconds
28 seconds

wraparound

I 4/7/05

» Use timestamp to distinguish sequence number

CSE 364: Computer Networks page 11

Keeping the Pipe Full

» 16-bit AdvertisedWindow

Bandwidth Delay x Bandwidth Product
T1 (1.5 Mbps) 18KB

Ethernet (10 Mbps) 122KB

T3 (45 Mbps) 549KB

FDDI (100 Mbps) 1.2MB

STS-3 (155 Mbps) 1.8MB

STS-12 (622 Mbps) 7.4MB

STS-24 (1.2 Gbps) 14.8MB

CSE 364: Computer Networks page 12

- Large Windows

» Apply scaling factor to advertised window

B Specifies how many bits window must be shifted to the
left

» Scaling factor exchanged during connection setup

I 4/7/05 CSE 364: Computer Networks page 13

TCP Flavors

» Tahoe, Reno, Vegas
» TCP Tahoe (distributed with 4.3BSD Unix)

m Original implementation of van Jacobson’s mechanisms
(VJ paper)
B Includes:
® Slow start (exponential increase of initial window)
® Congestion avoidance (additive increase of window)
® Fast retransmit (3 duplicate acks)

I 4/7/05 CSE 364: Computer Networks page 14

TCP Reno

» 1990: includes:

B All mechanisms in Tahoe

B Addition of fast-recovery (opening up window after fast
retransmit)

m Delayed acks (to avoid silly window syndrome)

® Silly window syndrome is when one byte is ack’d causing
advertisedwindow=1

B Header prediction (to improve performance)

CSE 364: Computer Networks page 15

SACK TCP

(RFC 2018)

-I What's Wrong with Current TCP?

» TCP uses a cumulative acknowledgment scheme,
in which the receiver identifies the last byte of data
successfully received.

» Received segments that are not at the left window
edge are not acknowledged.

» This scheme forces the sender to either wait a
roundtrip time to find out a segment was lost, or
unnecessarily retransmit segments which have
been correctly received.

» Results in significantly reduced overall throughput.

4/7/05 CSE 364: Computer Networks page 17

Selective Acknowledgment TCP

» Selective Acknowledgment (SACK) allows the
receiver to inform the sender about all segments
that have been successfully received.

» Allows the sender to retransmit only those
segments that have been lost.

» SACK is implemented using two different TCP
options.

4/7/05 CSE 364: Computer Networks page 18

-I The SACK-Permitted Option

» The first TCP option is the enabling option, “SACK-
permitted,” allowed only in a SYN segment.

» This indicates that the sender can handle SACK
data and the receiver should send it, if possible.
(Both sides can enable SACK, but each direction

of the TCP connection is treated independently.)
™

standard
TCP header

j> options field

.-

J

AN A
s Y Y
SACK-permitted NOP NOP

4/7/05 CSE 364: Computer Networks page 19

The SACK Option

4

4/7/05

If the SACK-permitted option i
received, the receiver may
send the SACK option.

What is a simple formula
for the SACK option

length field (based on n,
the number of blocks

in the option)?

(2 + 8 * n) bytes

rn

What is the maximum
number of SACK
blocks possible? Why?

v

_

CSE 364: Computer Networks

The maximum size of the
options field
is 40 bytes, giving a
maximum of 4 SACK
blocks (barring no
other TCP options).

page 20

b The SACK Opion

» Each block in a SACK represents bytes
successfully received that are contiguous and
isolated (the bytes immediately to the left and the
right have not yet been received).

M

= -
ACK 5500: SACK=6000 6500

ACK 5500; SACK=6000—7000

4/7/05 CSE 364: Computer Networks

-I SACK TCP Rules

» A SACK cannot be sent unless the SACK-
permitted option has been received (in the SYN).

» If a receiver has chosen to send SACKSs, it must
send them whenever it has data to SACK at the
time of an ACK.

» The receiver should send an ACK for every valid
segment it receives containing new data (standard

TCP behavior), and each of these ACKs should
contain a SACK, assuming there is data to SACK.

4/7/05 CSE 364: Computer Networks page 22

-I SACK TCP Rules

» The first SACK block must contain the most
recently received segment that is to be SACKed.

» The second block must contain the second most
recently received segment that is to be SACKed,
and so forth.

» Notice this can result in some data in the
receiver’s buffers which should be SACKed but is
not (if there are more segments to SACK than
available space in the TCP header).

4/7/05 CSE 364: Computer Networks page 23

SACK TCP Example
assuming a maximum of 3 blocks

ACK 5500; SACK=

ACK 5500; SACK=9000—9500, 8000-85

CSE 364: Computer Networks

SACK TCP Example (continued)

» At this point, the 4th segment (6500-6999) is
received. After the receiver acknowledges this
reception, the 2nd segment (5500-5999) is
received.

~7500
500: SACK=9000-9500, 2000-8500, 7000-750

ACK 5

6000—7500,9000—9500,8000—8500

ACK 5500; SACK=

ACK 7500; SACK=9000—9500,8000—8500

4/7/05 CSE 364: Computer Networks

-I What Should the Sender do?

» The sender must keep a buffer of
unacknowledged data. When it receives a SACK
option, it should turn on a SACK-flag bit for all
segments in the transmit buffer that are wholly
contained within one of the SACK blocks.

» After this SACK flag bit has been turned on, the
sender should skip that segment during any later
retransmission.

4/7/05 CSE 364: Computer Networks page 26

SACK TCP at the Sender Example

CSE 364: Computer Networks

Receiver Has A

Two-Segment Buffer (A Problem??

- 2 a an

What is the ACK / SACK segment
sent from the receiver at this point?

ACK 6000; SACK=6500-7000

4/7/05 CSE 364: Computer Networks page 28

- Reneging in SACK TCP

» It is possible for the receiver to SACK some data
and then later discard it. This is referred to as
reneging. This is discouraged, but permitted if the
receiver runs out of buffer space.

» If this occurs,

B The first SACK block must still reflect the newest
segment, i.e. contain the left and right edges of the
newest segment, even if that segment is going to be
discarded.

B Except for the newest segment, all SACK blocks must
not report any old data that has been discarded.

I 4/7/05 CSE 364: Computer Networks page 29

- Reneging in SACK TCP

» Therefore, the sender must maintain normal TCP
timeouts. A segment cannot be considered
received until an ACK is received for it. The
sender must retransmit the segment at the left
window edge after a retransmit timeout, even if the
SACK bit is on for that segment.

» A segment cannot be removed from the transmit
buffer until the left window edge is advanced over
it, via the receiving of an ACK.

4/7/05 CSE 364: Computer Networks page 30

-I SACK TCP Observations

» SACK TCP follows standard TCP congestion
control; it should not damage the network.

» SACK TCP has an advantage over other
implementations (Reno, Tahoe, Vegas, and

NewReno) as it has added information due to the
SACK data.

» This information allows the sender to better decide
what it needs to retransmit and what it does not.
This can only serve to help the sender, and should

not adversely affect other TCPs.

4/7/05 CSE 364: Computer Networks page 31

-I SACK TCP Observations

» While it is still possible for a SACK TCP to
needlessly retransmit segments, the number of
these retransmissions has been shown to be quite
low in simulations, relative to Reno and Tahoe

TCP.

» In any case, the number of needless
retransmissions must be strictly less than
Reno/Tahoe TCP. As the sender has additional
information from which to devise its retransmission
scheme, worse performance is not possible

(barring a flawed implementation).

4/7/05 CSE 364: Computer Networks page 32

SACK TCP

Implementation Progress

» Current SACK TCP implementations:
®m Windows 2000
m Windows 98 / Windows ME
m Solaris 7 and later
m Linux kernel 2.1.90 and later
m FreeBSD and NetBSD have optional modules

» ACIRI has measured the behavior of 2278 random
web servers that claim to be SACK-enabled. Out
of these, 2133 (93.6%) appeared to ignore SACK
data and only 145 (6.4%) appeared to actually use
the SACK data.

4/7/05 CSE 364: Computer Networks page 33

D-SACK TCP

(RFC 2883)

One Step Further: D-SACK TCP

Duplicate-SACK, or D-SACK is an extension to SACK TCP
which uses the first block of a SACK option is used to report
duplicate segments that have been received.

» A D-SACK block is only used to report a duplicate
contiguous sequence of data received by the receiver in the
most recent segment.

Each duplicate is reported at most once.

This allows the sender TCP to determine when a
retransmission was not necessary. It may not have been
necessary due to the retransmit timer expiring prematurely or
due to a false Fast Retransmit (3 duplicate ACKs received
due to network reordering).

v v

I 4/7/05 CSE 364: Computer Networks page 35

D-SACK Example
nacket replicated by the network

CSE 364: Computer Networks

D-SACK Example (losses, and the
sender changes the segment size

ACK 2500; SACK=1000-1500, 3000-3500

CSE 364: Computer Networks

-I D-SACK TCP Rules

» If the D-SACK block reports a duplicate sequence
from a (possibly larger) block of data in the
receiver buffer above the cumulative
acknowledgement, the second SACK block (the
first non D-SACK block) should specify this block.

» As only the first SACK block is considered to be a
D-SACK block, if multiple sequences are

duplicated, only the first is contained in the D-
SACK Dblock.

4/7/05 CSE 364: Computer Networks page 38

D-SACK TCP and Retransmissions

» D-SACK allows TCP to determine when a retransmission
was not necessary (it receives a D-SACK after it
retransmitted a segment). When this determination is made,
the sender can “undo” the halving of the congestion window,
as it will do when a segment is retransmitted (as it assumes
net congestion).

D-SACK also allows TCP to determine if the network is
duplicating packets (it will receive a D-SACK for a segment it
only sent once).

D-SACK’s weakness is that is does not allow a sender to
determine if both the original and retransmitted segment are
received, or the original is lost and the retransmitted
segment is duplicated by the network.

CSE 364: Computer Networks page 39

-I SACK and D-SACK Interaction

» There is no difference between SACK and D-
SACK, except that the first SACK block is used to

report a duplicate segment in D-SACK.

» There is no separate negotiation/options for D-
SACK.

» There are no inherit problems with having the
receiver use D-SACK and having the sender use
traditional SACK. As the duplicate that is being
reported is still being SACKed (for the second or
greater time), there is no problem with a SACK
TCP using this extension with a D-SACK TCP

(although the D-SACK specific data is not used).

4/7/05 CSE 364: Computer Networks page 40

(RFC 2414)

Increasing the Initial Window

RFC 2414 specifies an experimental change to TCP, the
increasing of the maximum initial window size, from one
segment to a larger value.

» This new larger value is given as:

min (4*MSS, max (2*MSS, 4380 bytes))
» This translates to:

Maximum Segment Size (MSS) Maximum Initial Window Size
<= 1095 bytes <=4*MSS

1095 bytes < MSS < 2190 bytes <= 4380 bytes

>= 2190 bytes <=2*MSS

CSE 364: Computer Networks page 42

Increasing the Initial Window

Blow-Star

M_ﬂ,
!
VLI

...PROCESSING DELAY ...

...PROCESSING DELAY ...

nmna”

Advantages of an

Increased Initial Window Size

» This change is in contrast to the slow start
mechanism, which initializes the initial window size
to one segment. This mechanism is in place to
implement sender-based congestion control (see
RFC 2001 for a complete discussion).

» This new larger window offers three distinct
advantages:

m With slow start, a receiver which uses delayed ACKs is
forced to wait for a timeout before generating an ACK.
With an initial window of at least two segments, the
receiver will generate an ACK after the second segment
arrives, causing a speedup in data acknowledgement.

CSE 364: Computer Networks page 44

Advantages of an

Increased Initial Window Size

m For TCP connections transferring a small amount of data
(such as SMTP and HTTP requests), the larger initial
window will reduce the transmission time, as more data
can be outstanding at once.

m For TCP connections transferring a large amount of data
with high propagation delays (long haul pipes; such as
backbone connects and satellite links), this change
eliminates up to three round-trip times (RTTs) and a
delayed ACK timeout during the initial slow start.

CSE 364: Computer Networks page 45

Disadvantages of an

Increased Initial Window Size

» This approach also has disadvantages:

B This approach could cause increased congestion, as
multiple segments are transmitted at once, at the
beginning of the connection. As modern routers tend to
not handle bursty traffic well (Drop Tail queue
management), this could increase the drop rate.

» ACIRI research on this topic concludes that there
IS no more danger from increasing the initial TCP
window size to a maximum of 4KB than the
presence of UDP communications (that do not

have end-to-end congestion control).

CSE 364: Computer Networks page 46

Increased Initial Window Size

Implementation Progress

» Looking at ACIRI observations, current web
servers use a wide range of initial TCP window
sizes, ranging from one segment (slow start) to
seventeen segments.

» This is a clear violation of RFC 2414, not to

mention RFC 2001 (the currently approved
IETF/ISOC standard).

» Such large initial window sizes seem to indicate a
greedy TCP, not conforming to the required
sender-side congestion control window (even if the

experimental higher initial window is considered).

4/7/05 CSE 364: Computer Networks page 47

T

» SACK TCP provides additional information to the
sender, allowing the reduction of needless
retransmissions. There is no danger in providing
this information, it simply serves to make a
“smarter” TCP sender.

» D-SACK TCP allows the sender to determine
when it has needlessly resent segments. This will
allow the sender to continuously refine its
retransmission strategy and undo unnecessary
and incorrect congestion control mechanisms.

» Increasing the initial TCP window is a slight
change that has advantages for both small and
large data transfers, without significantly affecting
the congestion control a smaller window provides.

4/7/05 CSE 364: Computer Networks page 48

