
page 14/7/05 CSE 364: Computer Networks

Fast Retransmit

Problem: coarse-
grain TCP
timeouts lead to
idle periods

Fast retransmit:
use duplicate
ACKs to trigger
retransmission

Packet 1
Packet 2
Packet 3
Packet 4

Packet 5
Packet 6

Retransmit
packet 3

ACK 1
ACK 2

ACK 2
ACK 2

ACK 6

ACK 2

Sender Receiver

page 24/7/05 CSE 364: Computer Networks

Fast Retransmit

 If we get 3 duplicate acks for segment N
 Retransmit segment N
 Set ssthresh to 0.5*cwnd
 Set cwnd to ssthresh + 3

For every subsequent duplicate ack
 Increase cwnd by 1 segment

When new ack received
 Reset cwnd to ssthresh (resume congestion avoidance)

page 34/7/05 CSE 364: Computer Networks

Congestion Avoidance

TCP needs to create congestion to find the point
where congestion occurs

Coarse grained timeout as loss indicator
 If loss occurs when cwnd = W

 Network can absorb 0.5W ~ W segments
 Set cwnd to 0.5W (multiplicative decrease)
 Needed to avoid exponential queue buildup

Upon receiving ACK
 Increase cwnd by 1/cwnd (additive increase)
 Multiplicative increase -> non-convergence

page 44/7/05 CSE 364: Computer Networks

Slow Start and Congestion Avoidance

 If packet is lost we lose our self clocking as well
 Need to implement slow-start and congestion avoidance

together

When timeout occurs set ssthresh to 0.5w
 If cwnd < ssthresh, use slow start
 Else use congestion avoidance

page 54/7/05 CSE 364: Computer Networks

Fast Recovery

 In congestion avoidance mode, if duplicate acks
are received, reduce cwnd to half

 If n successive duplicate acks are received, we
know that receiver got n segments after lost
segment:
 Advance cwnd by that number

page 64/7/05 CSE 364: Computer Networks

Results

Fast recovery
 skip the slow start phase
 go directly to half the last successful

CongestionWindow (ssthresh)

60

20

1.0 2.0 3.0 4.0 5.0 6.0 7.0

K
B

70

30
40
50

10

page 74/7/05 CSE 364: Computer Networks

Impact of Timeouts

Timeouts can cause sender to
 Slow start
 Retransmit a possibly large portion of the window

Bad for lossy high bandwidth-delay paths
Can leverage duplicate acks to:

 Retransmit fewer segments (fast retransmit)
 Advance cwnd more aggressively (fast recovery)

page 84/7/05 CSE 364: Computer Networks

Summary

Three way handshake to initiate TCP. Either side
can tear down connection using FIN sequence.

 Initial sequence number chosen to avoid packets
from earlier incarnations

AIMD to slowly probe network. Slow start to speed
up the probing process (at the expense of hard
congestion for the last step). Use ssthresh to
decide whether to restart slow start or AIMD after
loss

Fast retransmit by inferring duplicate ACKs = lost
packet, Fast recovery by inferring duplicate ACKs
= increasing CWND

page 94/7/05 CSE 364: Computer Networks

TCP Extensions

 Implemented using TCP options
 Timestamp
 Protection from sequence number wraparound
 Large windows

page 104/7/05 CSE 364: Computer Networks

Timestamp Extension

Used to improve timeout mechanism by more
accurate measurement of RTT

When sending a packet, insert current timestamp
into option

Receiver echoes timestamp in ACK

page 114/7/05 CSE 364: Computer Networks

Protection Against Wrap Around

 32-bit SequenceNum

Bandwidth Time Until Wrap Around
T1 (1.5 Mbps) 6.4 hours
Ethernet (10 Mbps) 57 minutes
T3 (45 Mbps) 13 minutes
FDDI (100 Mbps) 6 minutes
STS-3 (155 Mbps) 4 minutes
STS-12 (622 Mbps) 55 seconds
STS-24 (1.2 Gbps) 28 seconds

Use timestamp to distinguish sequence number
wraparound

page 124/7/05 CSE 364: Computer Networks

Keeping the Pipe Full

 16-bit AdvertisedWindow

Bandwidth Delay x Bandwidth Product
T1 (1.5 Mbps) 18KB
Ethernet (10 Mbps) 122KB
T3 (45 Mbps) 549KB
FDDI (100 Mbps) 1.2MB
STS-3 (155 Mbps) 1.8MB
STS-12 (622 Mbps) 7.4MB
STS-24 (1.2 Gbps) 14.8MB

page 134/7/05 CSE 364: Computer Networks

Large Windows

Apply scaling factor to advertised window
 Specifies how many bits window must be shifted to the

left

Scaling factor exchanged during connection setup

page 144/7/05 CSE 364: Computer Networks

TCP Flavors

Tahoe, Reno, Vegas
TCP Tahoe (distributed with 4.3BSD Unix)

 Original implementation of van Jacobson’s mechanisms
(VJ paper)

 Includes:
 Slow start (exponential increase of initial window)
 Congestion avoidance (additive increase of window)
 Fast retransmit (3 duplicate acks)

page 154/7/05 CSE 364: Computer Networks

TCP Reno

1990: includes:
 All mechanisms in Tahoe
 Addition of fast-recovery (opening up window after fast

retransmit)
 Delayed acks (to avoid silly window syndrome)

 Silly window syndrome is when one byte is ack’d causing
advertisedwindow=1

 Header prediction (to improve performance)

SACK TCP

(RFC 2018)

page 174/7/05 CSE 364: Computer Networks

What’s Wrong with Current TCP?

TCP uses a cumulative acknowledgment scheme,
in which the receiver identifies the last byte of data
successfully received.

Received segments that are not at the left window
edge are not acknowledged.

This scheme forces the sender to either wait a
roundtrip time to find out a segment was lost, or
unnecessarily retransmit segments which have
been correctly received.

Results in significantly reduced overall throughput.

page 184/7/05 CSE 364: Computer Networks

Selective Acknowledgment TCP

Selective Acknowledgment (SACK) allows the
receiver to inform the sender about all segments
that have been successfully received.

Allows the sender to retransmit only those
segments that have been lost.

SACK is implemented using two different TCP
options.

page 194/7/05 CSE 364: Computer Networks

The SACK-Permitted Option

The first TCP option is the enabling option, “SACK-
permitted,” allowed only in a SYN segment.

This indicates that the sender can handle SACK
data and the receiver should send it, if possible.
(Both sides can enable SACK, but each direction
of the TCP connection is treated independently.)

Kind = 4 Length = 2

HL = 6

standard
TCP header

options field

TCP header length

Kind = 1 Kind = 1

SACK-permitted NOP NOP

SYN bit

1

page 204/7/05 CSE 364: Computer Networks

The SACK Option

 If the SACK-permitted option is
received, the receiver may
send the SACK option.

Kind = 1 Kind = 1

HL = Y

Kind = 5 Length = X

Right Edge of 1st Block
Left Edge of 1st Block

Right Edge of nth Block
Left Edge of nth Block

standard
TCP header

options field

What is a simple formula
for the SACK option

 length field (based on n,
the number of blocks

in the option)?

(2 + 8 * n) bytes

What is the maximum
number of SACK

blocks possible? Why?
The maximum size of the

options field
is 40 bytes, giving a

maximum of 4 SACK
blocks (barring no
other TCP options).

page 214/7/05 CSE 364: Computer Networks

The SACK Option

Each block in a SACK represents bytes
successfully received that are contiguous and
isolated (the bytes immediately to the left and the
right have not yet been received).

sender

receiver

5500-5999
6000-6499

5000-5499

ACK 5500

6500-6999

ACK 5500; SACK=6000-6500

ACK 5500; SACK=6000-7000

page 224/7/05 CSE 364: Computer Networks

SACK TCP Rules

A SACK cannot be sent unless the SACK-
permitted option has been received (in the SYN).

 If a receiver has chosen to send SACKs, it must
send them whenever it has data to SACK at the
time of an ACK.

The receiver should send an ACK for every valid
segment it receives containing new data (standard
TCP behavior), and each of these ACKs should
contain a SACK, assuming there is data to SACK.

page 234/7/05 CSE 364: Computer Networks

SACK TCP Rules

The first SACK block must contain the most
recently received segment that is to be SACKed.

The second block must contain the second most
recently received segment that is to be SACKed,
and so forth.

Notice this can result in some data in the
receiver’s buffers which should be SACKed but is
not (if there are more segments to SACK than
available space in the TCP header).

page 244/7/05 CSE 364: Computer Networks

sender

receiver

5000-5499

6500-6999

6000-6499

8000-8499

7000-7499

ACK 5500

ACK 5500; SACK=6000-6500

ACK 5500; SACK=7000-7500, 6000-6500
7500-7999

8500-8999

5500-5999

ACK 5500; SACK=8000-8500, 7000-7500, 6000-6500

ACK 5500; SACK=9000-9500, 8000-8500, 7000-7500

9000-9499

SACK TCP Example
 (assuming a maximum of 3 blocks)

page 254/7/05 CSE 364: Computer Networks

SACK TCP Example (continued)

At this point, the 4th segment (6500-6999) is
received. After the receiver acknowledges this
reception, the 2nd segment (5500-5999) is
received.

sender

receiver

6500-6999

ACK 5500; SACK=6000-7500,9000-9500,8000-8500

5500-5999

ACK 7500; SACK=9000-9500,8000-8500

ACK 5500; SACK=9000-9500, 8000-8500, 7000-7500

page 264/7/05 CSE 364: Computer Networks

What Should the Sender do?

The sender must keep a buffer of
unacknowledged data. When it receives a SACK
option, it should turn on a SACK-flag bit for all
segments in the transmit buffer that are wholly
contained within one of the SACK blocks.

After this SACK flag bit has been turned on, the
sender should skip that segment during any later
retransmission.

page 274/7/05 CSE 364: Computer Networks

SACK TCP at the Sender Example

sender

receiver

6000-6499

ACK 5500; SACK=6000-6500

5500-5999

6500-6999
7000-7499

ACK 5500; SACK=6000-7000

5000-5499

5500-5999
7000-7499

ACK 5500; SACK=6000-7500SENDER
TIMEOUT

page 284/7/05 CSE 364: Computer Networks

Receiver Has A
Two-Segment Buffer (A Problem?)

sender

receiver

Receiver’s Buffer5000-5499

5500-5999

6000-6499

6500-6999

5000-5499

6000-6499

6000-6499

6500-6999

5500-5999

ACK 5500; SACK=6000-6500

ACK 5500; SACK=6000-7000

5500-5999 6500-6999

What is the ACK / SACK segment
sent from the receiver at this point?

ACK 6000; SACK=6500-7000

page 294/7/05 CSE 364: Computer Networks

Reneging in SACK TCP

 It is possible for the receiver to SACK some data
and then later discard it. This is referred to as
reneging. This is discouraged, but permitted if the
receiver runs out of buffer space.

 If this occurs,
 The first SACK block must still reflect the newest

segment, i.e. contain the left and right edges of the
newest segment, even if that segment is going to be
discarded.

 Except for the newest segment, all SACK blocks must
not report any old data that has been discarded.

page 304/7/05 CSE 364: Computer Networks

Reneging in SACK TCP

Therefore, the sender must maintain normal TCP
timeouts. A segment cannot be considered
received until an ACK is received for it. The
sender must retransmit the segment at the left
window edge after a retransmit timeout, even if the
SACK bit is on for that segment.

A segment cannot be removed from the transmit
buffer until the left window edge is advanced over
it, via the receiving of an ACK.

page 314/7/05 CSE 364: Computer Networks

SACK TCP Observations

SACK TCP follows standard TCP congestion
control; it should not damage the network.

SACK TCP has an advantage over other
implementations (Reno, Tahoe, Vegas, and
NewReno) as it has added information due to the
SACK data.

This information allows the sender to better decide
what it needs to retransmit and what it does not.
This can only serve to help the sender, and should
not adversely affect other TCPs.

page 324/7/05 CSE 364: Computer Networks

SACK TCP Observations

While it is still possible for a SACK TCP to
needlessly retransmit segments, the number of
these retransmissions has been shown to be quite
low in simulations, relative to Reno and Tahoe
TCP.

 In any case, the number of needless
retransmissions must be strictly less than
Reno/Tahoe TCP. As the sender has additional
information from which to devise its retransmission
scheme, worse performance is not possible
(barring a flawed implementation).

page 334/7/05 CSE 364: Computer Networks

SACK TCP
Implementation Progress
Current SACK TCP implementations:

 Windows 2000
 Windows 98 / Windows ME
 Solaris 7 and later
 Linux kernel 2.1.90 and later
 FreeBSD and NetBSD have optional modules

ACIRI has measured the behavior of 2278 random
web servers that claim to be SACK-enabled. Out
of these, 2133 (93.6%) appeared to ignore SACK
data and only 145 (6.4%) appeared to actually use
the SACK data.

D-SACK TCP

(RFC 2883)

page 354/7/05 CSE 364: Computer Networks

One Step Further: D-SACK TCP

 Duplicate-SACK, or D-SACK is an extension to SACK TCP
which uses the first block of a SACK option is used to report
duplicate segments that have been received.

 A D-SACK block is only used to report a duplicate
contiguous sequence of data received by the receiver in the
most recent segment.

 Each duplicate is reported at most once.
 This allows the sender TCP to determine when a

retransmission was not necessary. It may not have been
necessary due to the retransmit timer expiring prematurely or
due to a false Fast Retransmit (3 duplicate ACKs received
due to network reordering).

page 364/7/05 CSE 364: Computer Networks

D-SACK Example
(packet replicated by the network)

receiver

sender

3500-3999

4000-4499

ACK 4000

4500-4999

ACK 4000; SACK=4500-5000

5000-5499

ACK 4000; SACK=4500-5500

ACK 4000; SACK=5000-5500, 4500-5500

page 374/7/05 CSE 364: Computer Networks

D-SACK Example (losses, and the
sender changes the segment size)

sender

receiver
500-999

1500-1999

2500-2999

3000-3499

1000-1499

2000-2499 ACK 1000

ACK 1000; SACK=3000-3500

ACK 1500; SACK=3000-3500

ACK 1500; SACK=2000-2500,3000-3500

1000-2499

ACK 2500; SACK=1000-1500, 3000-3500

page 384/7/05 CSE 364: Computer Networks

D-SACK TCP Rules

 If the D-SACK block reports a duplicate sequence
from a (possibly larger) block of data in the
receiver buffer above the cumulative
acknowledgement, the second SACK block (the
first non D-SACK block) should specify this block.

As only the first SACK block is considered to be a
D-SACK block, if multiple sequences are
duplicated, only the first is contained in the D-
SACK block.

page 394/7/05 CSE 364: Computer Networks

D-SACK TCP and Retransmissions

 D-SACK allows TCP to determine when a retransmission
was not necessary (it receives a D-SACK after it
retransmitted a segment). When this determination is made,
the sender can “undo” the halving of the congestion window,
as it will do when a segment is retransmitted (as it assumes
net congestion).

 D-SACK also allows TCP to determine if the network is
duplicating packets (it will receive a D-SACK for a segment it
only sent once).

 D-SACK’s weakness is that is does not allow a sender to
determine if both the original and retransmitted segment are
received, or the original is lost and the retransmitted
segment is duplicated by the network.

page 404/7/05 CSE 364: Computer Networks

SACK and D-SACK Interaction

There is no difference between SACK and D-
SACK, except that the first SACK block is used to
report a duplicate segment in D-SACK.

There is no separate negotiation/options for D-
SACK.

There are no inherit problems with having the
receiver use D-SACK and having the sender use
traditional SACK. As the duplicate that is being
reported is still being SACKed (for the second or
greater time), there is no problem with a SACK
TCP using this extension with a D-SACK TCP
(although the D-SACK specific data is not used).

Increasing the Maximum
TCP Initial Window Size

(RFC 2414)

page 424/7/05 CSE 364: Computer Networks

Increasing the Initial Window

 RFC 2414 specifies an experimental change to TCP, the
increasing of the maximum initial window size, from one
segment to a larger value.

 This new larger value is given as:

 This translates to:
min (4*MSS, max (2*MSS, 4380 bytes))

<= 2 * MSS>= 2190 bytes

<= 4380 bytes1095 bytes < MSS < 2190 bytes

<= 4 * MSS<= 1095 bytes

Maximum Initial Window SizeMaximum Segment Size (MSS)

page 434/7/05 CSE 364: Computer Networks

Increasing the Initial Window

sender

receiver

sender

receiver
Slow-Start TCP RFC 2414 TCP

…
PRO

CESSING
 D

ELAY…

…
PRO

CESSING
 D

ELAY…

page 444/7/05 CSE 364: Computer Networks

Advantages of an
Increased Initial Window Size
This change is in contrast to the slow start

mechanism, which initializes the initial window size
to one segment. This mechanism is in place to
implement sender-based congestion control (see
RFC 2001 for a complete discussion).

This new larger window offers three distinct
advantages:
 With slow start, a receiver which uses delayed ACKs is

forced to wait for a timeout before generating an ACK.
With an initial window of at least two segments, the
receiver will generate an ACK after the second segment
arrives, causing a speedup in data acknowledgement.

page 454/7/05 CSE 364: Computer Networks

Advantages of an
Increased Initial Window Size

 For TCP connections transferring a small amount of data
(such as SMTP and HTTP requests), the larger initial
window will reduce the transmission time, as more data
can be outstanding at once.

 For TCP connections transferring a large amount of data
with high propagation delays (long haul pipes; such as
backbone connects and satellite links), this change
eliminates up to three round-trip times (RTTs) and a
delayed ACK timeout during the initial slow start.

page 464/7/05 CSE 364: Computer Networks

Disadvantages of an
Increased Initial Window Size
This approach also has disadvantages:

 This approach could cause increased congestion, as
multiple segments are transmitted at once, at the
beginning of the connection. As modern routers tend to
not handle bursty traffic well (Drop Tail queue
management), this could increase the drop rate.

ACIRI research on this topic concludes that there
is no more danger from increasing the initial TCP
window size to a maximum of 4KB than the
presence of UDP communications (that do not
have end-to-end congestion control).

page 474/7/05 CSE 364: Computer Networks

Increased Initial Window Size
Implementation Progress
Looking at ACIRI observations, current web

servers use a wide range of initial TCP window
sizes, ranging from one segment (slow start) to
seventeen segments.

This is a clear violation of RFC 2414, not to
mention RFC 2001 (the currently approved
IETF/ISOC standard).

Such large initial window sizes seem to indicate a
greedy TCP, not conforming to the required
sender-side congestion control window (even if the
experimental higher initial window is considered).

page 484/7/05 CSE 364: Computer Networks

Summary

SACK TCP provides additional information to the
sender, allowing the reduction of needless
retransmissions. There is no danger in providing
this information, it simply serves to make a
“smarter” TCP sender.

D-SACK TCP allows the sender to determine
when it has needlessly resent segments. This will
allow the sender to continuously refine its
retransmission strategy and undo unnecessary
and incorrect congestion control mechanisms.

 Increasing the initial TCP window is a slight
change that has advantages for both small and
large data transfers, without significantly affecting
the congestion control a smaller window provides.

