
page 14/5/05 CSE 364: Computer Networks

So far,

On the networking side, we looked at mechanisms
to links hosts using direct linked networks and
then forming a network of these networks. We
introduced Internet protocols as a way to name
and access the nodes

Now we are focusing on TCP as a mechanism to
implement reliable traffic that can operate on a
heterogeneous network and be friendly to other
traffic
 We’ve seen flow control, initial connection negotiation

(ISN, SYN/FIN,)
 Next we look at congestion control

page 24/5/05 CSE 364: Computer Networks

Congestion

 If both sources send full windows, we may
get congestion collapse

Other forms of congestion collapse:
 Retransmissions of large packets after loss of a

single fragment
 Non-feedback controlled sources

Destination
1.5-Mbps T1 link

Router

Source
2

Source
1

100-Mbps FDDI

10-Mbps Ethernet

page 34/5/05 CSE 364: Computer Networks

Resource allocation mechanisms

Router Centric vs Host-centric
 Whether routers are required to deal with congestion by

themselves or whether end hosts monitor the network
and respond to congestion.

 Both require some help from the other component

Reservation based or feedback based
 Reservation: end host asks for certain resources
 Feedback based: End host reacts to feedback from

system, explcit or implicit

Window based or rate based
 TCP like: buffer size specifies amount of traffic to expect

(can be bursty)
 Constrain rate at which data is sent

page 44/5/05 CSE 364: Computer Networks

Queuing disciplines

FIFO + tail drop:
Arriving
packet

Next free
buffer

Free buffers Queued packets

Next to
transmit

(a)

Arriving
packet

Next to
transmit

(b) Drop

page 54/5/05 CSE 364: Computer Networks

Fair queuing: Fairness per flow

Flow 1

Flow 2

Flow 3

Flow 4

Round-robin

service

page 64/5/05 CSE 364: Computer Networks

6.3 TCP Congestion Control

 Idea
 assumes best-effort network (FIFO or FQ routers) each

source determines network capacity for itself
 uses implicit feedback
 ACKs pace transmission (self-clocking)

Challenge
 determining the available capacity in the first place
 adjusting to changes in the available capacity

page 74/5/05 CSE 364: Computer Networks

TCP Congestion Control

A collection of interrelated mechanisms:
 Slow start
 Congestion avoidance
 Accurate retransmission timeout estimation
 Fast retransmit
 Fast recovery

page 84/5/05 CSE 364: Computer Networks

Congestion Control

Underlying design principle: packet conservation
 At equilibrium, inject packet into network only when one

is removed
 Basis for stability of physical systems

A mechanism which:
 Uses network resources efficiently
 Preserves fair network resource allocation
 Prevents or avoids collapse

Congestion collapse is not just a theory
 Has been frequently observed in many networks

page 94/5/05 CSE 364: Computer Networks

TCP Congestion Control Basics

Keep a congestion window, cwnd
 Denotes how much network is able to absorb

Sender’s maximum window:
 Min (advertised window, cwnd)

Sender’s actual window:
 Max window - unacknowledged segments

page 104/5/05 CSE 364: Computer Networks

Additive Increase/Multiplicative
Decrease
 Objective: adjust to changes in the available capacity
 New state variable per connection: CongestionWindow

 limits how much data source has in transit

MaxWin = MIN(CongestionWindow,

AdvertisedWindow)
EffWin = MaxWin - (LastByteSent -

LastByteAcked)
 Idea:

 increase CongestionWindow when congestion goes
down

 decrease CongestionWindow when congestion goes
up

page 114/5/05 CSE 364: Computer Networks

AIMD (cont)

Question: how does the source determine whether
or not the network is congested?

Answer: a timeout occurs
 timeout signals that a packet was lost
 packets are seldom lost due to transmission error
 lost packet implies congestion

page 124/5/05 CSE 364: Computer Networks

AIMD (cont)

 In practice: increment a little for each ACK
Increment = (MSS * MSS)/CongestionWindow
CongestionWindow += Increment

Source Destination

…

Algorithm
 increment CongestionWindow by

one packet per RTT (linear increase)
 divide CongestionWindow by two

whenever a timeout occurs
(multiplicative decrease)

page 134/5/05 CSE 364: Computer Networks

AIMD (cont)

Trace: sawtooth behavior for cwnd vs time

60

20

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

K
B

Time (seconds)

70

30
40
50

10

10.0

page 144/5/05 CSE 364: Computer Networks

Self-clocking

 If we have large actual window, should we send
data in one shot?
 No, use acks to clock sending new data

page 154/5/05 CSE 364: Computer Networks

..Self-clocking

PrPb

Ar

Ab

receiversender

As

page 164/5/05 CSE 364: Computer Networks

Slow Start

AIMD is too slow to ramp
up TCP performance

Objective: determine the
available capacity in the first

 Idea:
 begin with

CongestionWindow = 1
packet

 double CongestionWindow
each RTT (increment by 1
packet for each ACK)

Source Destination

…

page 174/5/05 CSE 364: Computer Networks

Slow Start Example

1

one RTT

one pkt time

0R

2
1R

3

4
2R

5
6
7

8
3R

9
10
11

12
13

14
15

1

2 3

4 5 6 7

page 184/5/05 CSE 364: Computer Networks

Slow Start (cont)

Exponential growth, but slower than all at once
Used…

when first starting connection
when connection goes dead waiting for timeout

Trace

Problem: lose up to half a CongestionWindow’s
worth of data

60

20

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

K
B

70

30
40
50

10

page 194/5/05 CSE 364: Computer Networks

Fast Retransmit

Problem: coarse-
grain TCP
timeouts lead to
idle periods

Fast retransmit:
use duplicate
ACKs to trigger
retransmission

Packet 1
Packet 2
Packet 3
Packet 4

Packet 5
Packet 6

Retransmit
packet 3

ACK 1
ACK 2

ACK 2
ACK 2

ACK 6

ACK 2

Sender Receiver

page 204/5/05 CSE 364: Computer Networks

Fast Retransmit

 If we get 3 duplicate acks for segment N
 Retransmit segment N
 Set ssthresh to 0.5*cwnd
 Set cwnd to ssthresh + 3

For every subsequent duplicate ack
 Increase cwnd by 1 segment

When new ack received
 Reset cwnd to ssthresh (resume congestion avoidance)

page 214/5/05 CSE 364: Computer Networks

Congestion Avoidance

TCP needs to create congestion to find the point
where congestion occurs

Coarse grained timeout as loss indicator
 If loss occurs when cwnd = W

 Network can absorb 0.5W ~ W segments
 Set cwnd to 0.5W (multiplicative decrease)
 Needed to avoid exponential queue buildup

Upon receiving ACK
 Increase cwnd by 1/cwnd (additive increase)
 Multiplicative increase -> non-convergence

page 224/5/05 CSE 364: Computer Networks

Slow Start and Congestion Avoidance

 If packet is lost we lose our self clocking as well
 Need to implement slow-start and congestion avoidance

together

When timeout occurs set ssthresh to 0.5w
 If cwnd < ssthresh, use slow start
 Else use congestion avoidance

page 234/5/05 CSE 364: Computer Networks

Fast Recovery

 In congestion avoidance mode, if duplicate acks
are received, reduce cwnd to half

 If n successive duplicate acks are received, we
know that receiver got n segments after lost
segment:
 Advance cwnd by that number

page 244/5/05 CSE 364: Computer Networks

Results

Fast recovery
 skip the slow start phase
 go directly to half the last successful

CongestionWindow (ssthresh)

60

20

1.0 2.0 3.0 4.0 5.0 6.0 7.0

K
B

70

30
40
50

10

page 254/5/05 CSE 364: Computer Networks

Impact of Timeouts

Timeouts can cause sender to
 Slow start
 Retransmit a possibly large portion of the window

Bad for lossy high bandwidth-delay paths
Can leverage duplicate acks to:

 Retransmit fewer segments (fast retransmit)
 Advance cwnd more aggressively (fast recovery)

