
page 14/5/05 CSE 364: Computer Networks

So far,

On the networking side, we looked at mechanisms
to links hosts using direct linked networks and
then forming a network of these networks. We
introduced Internet protocols as a way to name
and access the nodes

Now we are focusing on TCP as a mechanism to
implement reliable traffic that can operate on a
heterogeneous network and be friendly to other
traffic
 We’ve seen flow control, initial connection negotiation

(ISN, SYN/FIN,)
 Next we look at congestion control

page 24/5/05 CSE 364: Computer Networks

Congestion

 If both sources send full windows, we may
get congestion collapse

Other forms of congestion collapse:
 Retransmissions of large packets after loss of a

single fragment
 Non-feedback controlled sources

Destination
1.5-Mbps T1 link

Router

Source
2

Source
1

100-Mbps FDDI

10-Mbps Ethernet

page 34/5/05 CSE 364: Computer Networks

Resource allocation mechanisms

Router Centric vs Host-centric
 Whether routers are required to deal with congestion by

themselves or whether end hosts monitor the network
and respond to congestion.

 Both require some help from the other component

Reservation based or feedback based
 Reservation: end host asks for certain resources
 Feedback based: End host reacts to feedback from

system, explcit or implicit

Window based or rate based
 TCP like: buffer size specifies amount of traffic to expect

(can be bursty)
 Constrain rate at which data is sent

page 44/5/05 CSE 364: Computer Networks

Queuing disciplines

FIFO + tail drop:
Arriving
packet

Next free
buffer

Free buffers Queued packets

Next to
transmit

(a)

Arriving
packet

Next to
transmit

(b) Drop

page 54/5/05 CSE 364: Computer Networks

Fair queuing: Fairness per flow

Flow 1

Flow 2

Flow 3

Flow 4

Round-robin

service

page 64/5/05 CSE 364: Computer Networks

6.3 TCP Congestion Control

 Idea
 assumes best-effort network (FIFO or FQ routers) each

source determines network capacity for itself
 uses implicit feedback
 ACKs pace transmission (self-clocking)

Challenge
 determining the available capacity in the first place
 adjusting to changes in the available capacity

page 74/5/05 CSE 364: Computer Networks

TCP Congestion Control

A collection of interrelated mechanisms:
 Slow start
 Congestion avoidance
 Accurate retransmission timeout estimation
 Fast retransmit
 Fast recovery

page 84/5/05 CSE 364: Computer Networks

Congestion Control

Underlying design principle: packet conservation
 At equilibrium, inject packet into network only when one

is removed
 Basis for stability of physical systems

A mechanism which:
 Uses network resources efficiently
 Preserves fair network resource allocation
 Prevents or avoids collapse

Congestion collapse is not just a theory
 Has been frequently observed in many networks

page 94/5/05 CSE 364: Computer Networks

TCP Congestion Control Basics

Keep a congestion window, cwnd
 Denotes how much network is able to absorb

Sender’s maximum window:
 Min (advertised window, cwnd)

Sender’s actual window:
 Max window - unacknowledged segments

page 104/5/05 CSE 364: Computer Networks

Additive Increase/Multiplicative
Decrease
 Objective: adjust to changes in the available capacity
 New state variable per connection: CongestionWindow

 limits how much data source has in transit

MaxWin = MIN(CongestionWindow,

AdvertisedWindow)
EffWin = MaxWin - (LastByteSent -

LastByteAcked)
 Idea:

 increase CongestionWindow when congestion goes
down

 decrease CongestionWindow when congestion goes
up

page 114/5/05 CSE 364: Computer Networks

AIMD (cont)

Question: how does the source determine whether
or not the network is congested?

Answer: a timeout occurs
 timeout signals that a packet was lost
 packets are seldom lost due to transmission error
 lost packet implies congestion

page 124/5/05 CSE 364: Computer Networks

AIMD (cont)

 In practice: increment a little for each ACK
Increment = (MSS * MSS)/CongestionWindow
CongestionWindow += Increment

Source Destination

…

Algorithm
 increment CongestionWindow by

one packet per RTT (linear increase)
 divide CongestionWindow by two

whenever a timeout occurs
(multiplicative decrease)

page 134/5/05 CSE 364: Computer Networks

AIMD (cont)

Trace: sawtooth behavior for cwnd vs time

60

20

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

K
B

Time (seconds)

70

30
40
50

10

10.0

page 144/5/05 CSE 364: Computer Networks

Self-clocking

 If we have large actual window, should we send
data in one shot?
 No, use acks to clock sending new data

page 154/5/05 CSE 364: Computer Networks

..Self-clocking

PrPb

Ar

Ab

receiversender

As

page 164/5/05 CSE 364: Computer Networks

Slow Start

AIMD is too slow to ramp
up TCP performance

Objective: determine the
available capacity in the first

 Idea:
 begin with

CongestionWindow = 1
packet

 double CongestionWindow
each RTT (increment by 1
packet for each ACK)

Source Destination

…

page 174/5/05 CSE 364: Computer Networks

Slow Start Example

1

one RTT

one pkt time

0R

2
1R

3

4
2R

5
6
7

8
3R

9
10
11

12
13

14
15

1

2 3

4 5 6 7

page 184/5/05 CSE 364: Computer Networks

Slow Start (cont)

Exponential growth, but slower than all at once
Used…

when first starting connection
when connection goes dead waiting for timeout

Trace

Problem: lose up to half a CongestionWindow’s
worth of data

60

20

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

K
B

70

30
40
50

10

page 194/5/05 CSE 364: Computer Networks

Fast Retransmit

Problem: coarse-
grain TCP
timeouts lead to
idle periods

Fast retransmit:
use duplicate
ACKs to trigger
retransmission

Packet 1
Packet 2
Packet 3
Packet 4

Packet 5
Packet 6

Retransmit
packet 3

ACK 1
ACK 2

ACK 2
ACK 2

ACK 6

ACK 2

Sender Receiver

page 204/5/05 CSE 364: Computer Networks

Fast Retransmit

 If we get 3 duplicate acks for segment N
 Retransmit segment N
 Set ssthresh to 0.5*cwnd
 Set cwnd to ssthresh + 3

For every subsequent duplicate ack
 Increase cwnd by 1 segment

When new ack received
 Reset cwnd to ssthresh (resume congestion avoidance)

page 214/5/05 CSE 364: Computer Networks

Congestion Avoidance

TCP needs to create congestion to find the point
where congestion occurs

Coarse grained timeout as loss indicator
 If loss occurs when cwnd = W

 Network can absorb 0.5W ~ W segments
 Set cwnd to 0.5W (multiplicative decrease)
 Needed to avoid exponential queue buildup

Upon receiving ACK
 Increase cwnd by 1/cwnd (additive increase)
 Multiplicative increase -> non-convergence

page 224/5/05 CSE 364: Computer Networks

Slow Start and Congestion Avoidance

 If packet is lost we lose our self clocking as well
 Need to implement slow-start and congestion avoidance

together

When timeout occurs set ssthresh to 0.5w
 If cwnd < ssthresh, use slow start
 Else use congestion avoidance

page 234/5/05 CSE 364: Computer Networks

Fast Recovery

 In congestion avoidance mode, if duplicate acks
are received, reduce cwnd to half

 If n successive duplicate acks are received, we
know that receiver got n segments after lost
segment:
 Advance cwnd by that number

page 244/5/05 CSE 364: Computer Networks

Results

Fast recovery
 skip the slow start phase
 go directly to half the last successful

CongestionWindow (ssthresh)

60

20

1.0 2.0 3.0 4.0 5.0 6.0 7.0

K
B

70

30
40
50

10

page 254/5/05 CSE 364: Computer Networks

Impact of Timeouts

Timeouts can cause sender to
 Slow start
 Retransmit a possibly large portion of the window

Bad for lossy high bandwidth-delay paths
Can leverage duplicate acks to:

 Retransmit fewer segments (fast retransmit)
 Advance cwnd more aggressively (fast recovery)

