
page 13/30/05 CSE 364: Computer Networks

State Transition Diagram
CLOSED

LISTEN

SYN_RCVD SYN_SENT

ESTABLISHED

CLOSE_WAIT

LAST_ACKCLOSING

TIME_WAIT

FIN_WAIT_2

FIN_WAIT_1

Passive open Close

Send/SYN
SYN/SYN + ACK

SYN + ACK/ACK

SYN/SYN + ACK

ACK

Close/FIN

FIN/ACKClose/FIN

FIN/ACKACK + FIN/ACK
Timeout after two
segment lifetimes

FIN/ACK
ACK

ACK

ACK

Close/FIN

Close

CLOSED

Active open/SYN

page 23/30/05 CSE 364: Computer Networks

Netstat -n in darwin.cc.nd.edu

127.0.0.1.60340 127.0.0.1.6019 32768 0 32768 0 CLOSE_WAIT
127.0.0.1.6019 127.0.0.1.60340 32768 0 32768 0 FIN_WAIT_2

127.0.0.1.60343 127.0.0.1.6019 32768 0 32768 0 CLOSE_WAIT
127.0.0.1.6019 127.0.0.1.60343 32768 0 32768 0 FIN_WAIT_2

127.0.0.1.60344 127.0.0.1.6019 32768 0 32768 0 CLOSE_WAIT
127.0.0.1.6019 127.0.0.1.60344 32768 0 32768 0 FIN_WAIT_2

129.74.250.114.22 129.74.98.159.62351 65535 47 25488 0 ESTABLISHED
129.74.250.114.22 67.176.34.217.3977 63148 0 24820 0 ESTABLISHED

129.74.250.114.60349 129.74.250.221.993 24820 0 24820 0 ESTABLISHED
129.74.250.114.22 66.254.224.43.3246 64500 0 24752 0 ESTABLISHED

129.74.250.114.60350 129.74.250.114.32775 32768 0 32768 0 TIME_WAIT
129.74.250.114.22 67.176.34.217.3993 63544 0 24820 0 ESTABLISHED

page 33/30/05 CSE 364: Computer Networks

Sliding Window Revisited

 Sending side
 LastByteAcked < =

LastByteSent
 LastByteSent < =

LastByteWritten
 buffer bytes between

LastByteAcked and
LastByteWritten

Sending application

LastByteWritten

TCP

LastByteSentLastByteAcked

Receiving application

LastByteRead

TCP

LastByteRcvdNextByteExpected

 Receiving side
 LastByteRead <

NextByteExpected
 NextByteExpected < =

LastByteRcvd +1
 buffer bytes between

NextByteRead and
LastByteRcvd

page 43/30/05 CSE 364: Computer Networks

Flow Control

Fast sender can overrun receiver:
 Packet loss, unnecessary retransmissions

Possible solutions:
 Sender transmits at pre-negotiated rate
 Sender limited to a window’s worth of unacknowledged

data

Flow control different from congestion control

page 53/30/05 CSE 364: Computer Networks

Flow Control

 Send buffer size: MaxSendBuffer
 Receive buffer size: MaxRcvBuffer
 Receiving side

 LastByteRcvd - LastByteRead < = MaxRcvBuffer
 AdvertisedWindow = MaxRcvBuffer - (NextByteExpected -

NextByteRead)
 Sending side

 LastByteSent - LastByteAcked < = AdvertisedWindow
 EffectiveWindow = AdvertisedWindow - (LastByteSent -

LastByteAcked)
 LastByteWritten - LastByteAcked < = MaxSendBuffer
 block sender if (LastByteWritten - LastByteAcked) + y >

MaxSenderBuffer
 Always send ACK in response to arriving data segment
 Persist when AdvertisedWindow = 0

page 63/30/05 CSE 364: Computer Networks

Round-trip Time Estimation

Wait at least one RTT before retransmitting
 Importance of accurate RTT estimators:

 Low RTT -> unneeded retransmissions
 High RTT -> poor throughput

RTT estimator must adapt to change in RTT
 But not too fast, or too slow!

Problem: If the instantaneously calculated RTT is
10, 20, 5, 12, 3 , 5, 6; what RTT should we use for
calculations?

page 73/30/05 CSE 364: Computer Networks

Initial Round-trip Estimator

Round trip times exponentially averaged:
 New RTT = α (old RTT) + (1 - α) (new sample)
 Recommended value for α: 0.8 - 0.9
 Retransmit timer set to β RTT, where β = 2
 Every time timer expires, RTO exponentially backed-off

page 83/30/05 CSE 364: Computer Networks

Retransmission Ambiguity

A B

ACK

Sample
RTT

A B
Original transmission

retransmission
Sample
RTT

Original transmission

retransmission

ACK

page 93/30/05 CSE 364: Computer Networks

Karn’s Retransmission Timeout
Estimator
Accounts for retransmission ambiguity
 If a segment has been retransmitted:

 Don’t count RTT sample on ACKs for this segment
 Keep backed off time-out for next packet
 Reuse RTT estimate only after one successful

transmission

page 103/30/05 CSE 364: Computer Networks

Karn/Partridge Algorithm

Do not sample RTT when retransmitting
Double timeout after each retransmission

Sender Receiver

Original transmission

ACKSa
m

pl
eR

TT

Retransmission

Sender Receiver

Original transmission

ACK

Sa
m

pl
eR

TT

Retransmission

page 113/30/05 CSE 364: Computer Networks

Jacobson’s Retransmission Timeout
Estimator
Key observation:

 Using β RTT for timeout doesn’t work
 At high loads round trip variance is high

Solution:
 If D denotes mean variation
 Timeout = RTT + 4D

page 123/30/05 CSE 364: Computer Networks

Jacobson/ Karels Algorithm

New Calculations for average RTT
Diff = SampleRTT - EstRTT
EstRTT = EstRTT + (d x Diff)
Dev = Dev + d(|Diff| - Dev)

 where d is a factor between 0 and 1

Consider variance when setting timeout value
TimeOut = m x EstRTT + f x Dev

 where m = 1 and f = 4

Notes
 algorithm only as good as granularity of clock (500ms on

Unix)
 accurate timeout mechanism important to congestion

control (later)

page 133/30/05 CSE 364: Computer Networks

Congestion

 If both sources send full windows, we may
get congestion collapse

Other forms of congestion collapse:
 Retransmissions of large packets after loss of a

single fragment
 Non-feedback controlled sources

10 Mbps

100 Mbps

1.5 Mbps

page 143/30/05 CSE 364: Computer Networks

Congestion Response

load

throughput

load

delay

Avoidance keeps the system performing at
the knee
Control kicks in once the system has
reached a congested state

page 153/30/05 CSE 364: Computer Networks

Separation of Functionality

Sending host must adjust amount of data it puts in
the network based on detected congestion

Routers can help by:
 Sending accurate congestion signals
 Isolating well-behaved from ill-behaved sources

page 163/30/05 CSE 364: Computer Networks

6.3 TCP Congestion Control

 Idea
 assumes best-effort network (FIFO or FQ routers)each

source determines network capacity for itself
 uses implicit feedback
 ACKs pace transmission (self-clocking)

Challenge
 determining the available capacity in the first place
 adjusting to changes in the available capacity

page 173/30/05 CSE 364: Computer Networks

TCP Congestion Control

A collection of interrelated mechanisms:
 Slow start
 Congestion avoidance
 Accurate retransmission timeout estimation
 Fast retransmit
 Fast recovery

page 183/30/05 CSE 364: Computer Networks

Congestion Control

Underlying design principle: packet conservation
 At equilibrium, inject packet into network only when one

is removed
 Basis for stability of physical systems

A mechanism which:
 Uses network resources efficiently
 Preserves fair network resource allocation
 Prevents or avoids collapse

Congestion collapse is not just a theory
 Has been frequently observed in many networks

page 193/30/05 CSE 364: Computer Networks

TCP Congestion Control Basics

Keep a congestion window, cwnd
 Denotes how much network is able to absorb

Sender’s maximum window:
 Min (advertised window, cwnd)

Sender’s actual window:
 Max window - unacknowledged segments

page 203/30/05 CSE 364: Computer Networks

Congestion Under Infinite Buffering

Nagle (RFC 970) showed that congestion will not
go away even with infinite buffers

Basic argument
 A datagram network must have TTL
 With infinite buffering queuing delays increase
 Even if buffers are not dropped for lack of buffering, they

will be dropped because TTL expires

