
page 13/29/05 CSE 364: Computer Networks

TCP Overview

Connection-oriented
Byte-stream

 app writes bytes
 TCP sends segments
 app reads bytes

Application process

Write
bytes

TCP
Send buffer

Segment Segment Segment
Transmit segments

Application process

Read
bytes

TCP
Receive buffer

…

… …

 Full duplex
 Flow control: keep sender from

overrunning receiver
 Congestion control: keep sender

from overrunning network

page 23/29/05 CSE 364: Computer Networks

Remember

TCP: Segments, IP: packets, Ethernet: Frames
TCP segments are encapsulated as IP data which

are encapsulated as Ethernet frame data

page 33/29/05 CSE 364: Computer Networks

Data Link Versus Transport (TCP)

Potentially connects many different hosts
 need explicit connection establishment and termination

 TCP three way hand-shake

Potentially different RTT
 need adaptive timeout mechanism

Potentially long delay in network
 need to be prepared for arrival of very old packets

 Sequence number space should be well thought out

Potentially different capacity at destination
 need to accommodate different node capacity

 Flow control

Potentially different network capacity
 need to be prepared for network congestion

 Congestion control

page 43/29/05 CSE 364: Computer Networks

Segment Format

Options (variable)

Data

Checksum

SrcPort DstPort

HdrLen 0 Flags

UrgPtr

AdvertisedWindow

SequenceNum

Acknowledgment

0 4 10 16 31

page 53/29/05 CSE 364: Computer Networks

Segment Format (cont)

Each connection identified with 4-tuple:
 (SrcPort, SrcIPAddr, DstPort, DstIPAddr)

Sliding window + flow control
acknowledgment, SequenceNum, AdvertisedWindow

Flags
SYN, FIN, RESET, PUSH, URG, ACK

Checksum
pseudo header + TCP header + data

Sender

Data (SequenceNum)

Acknowledgment +
AdvertisedWindow

Receiver

page 63/29/05 CSE 364: Computer Networks

Sequence Number Selection

 Initial sequence number (ISN) selection
 Why not simply chose 0?

 Must avoid overlap with earlier incarnation.
 New sequence number should be larger than previous

number.
 Why can’t the system remember the previous number

used?

Requirements for ISN selection
 Must operate correctly

 Without synchronized clocks
 Despite node failures

page 73/29/05 CSE 364: Computer Networks

ISN and Quiet Time

Use local clock to select ISN
 Clock wraparound must be greater than max segment

lifetime (MSL)

Upon startup, cannot assign sequence numbers
for MSL seconds

Can still have sequence number overlap
 If sequence number space not large enough for high-

bandwidth connections

page 83/29/05 CSE 364: Computer Networks

Connection Establishment
Active participant

(client)
Passive participant

(server)SYN, SequenceNum = x

SYN + ACK, SequenceNum = y

Acknowledgment = x+1

ACK, Acknowledgment = y + 1

Three way handshake

page 93/29/05 CSE 364: Computer Networks

Connection Tear-down

Normal termination
 Allow unilateral close
 Avoid sequence number overlap

TCP must continue to receive data even after
closing
 Cannot close connection immediately: what if a new

connection restarts and uses same sequence number
and receives retransmitted FIN from the current session?

page 103/29/05 CSE 364: Computer Networks

Tear-down Packet Exchange

Sender Receiver
FIN

FIN-ACK

FIN

FIN-ACK

Data write

Data ack

page 113/29/05 CSE 364: Computer Networks

State Transition Diagram
CLOSED

LISTEN

SYN_RCVD SYN_SENT

ESTABLISHED

CLOSE_WAIT

LAST_ACKCLOSING

TIME_WAIT

FIN_WAIT_2

FIN_WAIT_1

Passive open Close

Send/SYN
SYN/SYN + ACK

SYN + ACK/ACK

SYN/SYN + ACK

ACK

Close/FIN

FIN/ACKClose/FIN

FIN/ACKACK + FIN/ACK
Timeout after two
segment lifetimes

FIN/ACK
ACK

ACK

ACK

Close/FIN

Close

CLOSED

Active open/SYN

page 123/29/05 CSE 364: Computer Networks

Sliding Window Revisited

 Sending side
 LastByteAcked < =

LastByteSent
 LastByteSent < =

LastByteWritten
 buffer bytes between

LastByteAcked and
LastByteWritten

Sending application

LastByteWritten

TCP

LastByteSentLastByteAcked

Receiving application

LastByteRead

TCP

LastByteRcvdNextByteExpected

 Receiving side
 LastByteRead <

NextByteExpected
 NextByteExpected < =

LastByteRcvd +1
 buffer bytes between

NextByteRead and
LastByteRcvd

page 133/29/05 CSE 364: Computer Networks

Flow Control

Fast sender can overrun receiver:
 Packet loss, unnecessary retransmissions

Possible solutions:
 Sender transmits at pre-negotiated rate
 Sender limited to a window’s worth of unacknowledged

data

Flow control different from congestion control

page 143/29/05 CSE 364: Computer Networks

Flow Control

 Send buffer size: MaxSendBuffer
 Receive buffer size: MaxRcvBuffer
 Receiving side

 LastByteRcvd - LastByteRead < = MaxRcvBuffer
 AdvertisedWindow = MaxRcvBuffer - (NextByteExpected -

NextByteRead)
 Sending side

 LastByteSent - LastByteAcked < = AdvertisedWindow
 EffectiveWindow = AdvertisedWindow - (LastByteSent -

LastByteAcked)
 LastByteWritten - LastByteAcked < = MaxSendBuffer
 block sender if (LastByteWritten - LastByteAcked) + y >

MaxSenderBuffer
 Always send ACK in response to arriving data segment
 Persist when AdvertisedWindow = 0

page 153/29/05 CSE 364: Computer Networks

Round-trip Time Estimation

Wait at least one RTT before retransmitting
 Importance of accurate RTT estimators:

 Low RTT -> unneeded retransmissions
 High RTT -> poor throughput

RTT estimator must adapt to change in RTT
 But not too fast, or too slow!

Problem: If the instantaneously calculated RTT is
10, 20, 5, 12, 3 , 5, 6; what RTT should we use for
calculations?

page 163/29/05 CSE 364: Computer Networks

Initial Round-trip Estimator

Round trip times exponentially averaged:
 New RTT = α (old RTT) + (1 - α) (new sample)
 Recommended value for α: 0.8 - 0.9
 Retransmit timer set to β RTT, where β = 2
 Every time timer expires, RTO exponentially backed-off

page 173/29/05 CSE 364: Computer Networks

Retransmission Ambiguity

A B

ACK

Sample
RTT

A B
Original transmission

retransmission
Sample
RTT

Original transmission

retransmission

ACK

page 183/29/05 CSE 364: Computer Networks

Karn’s Retransmission Timeout
Estimator
Accounts for retransmission ambiguity
 If a segment has been retransmitted:

 Don’t count RTT sample on ACKs for this segment
 Keep backed off time-out for next packet
 Reuse RTT estimate only after one successful

transmission

page 193/29/05 CSE 364: Computer Networks

Karn/Partridge Algorithm

Do not sample RTT when retransmitting
Double timeout after each retransmission

Sender Receiver

Original transmission

ACKSa
m

pl
eR

TT

Retransmission

Sender Receiver

Original transmission

ACK

Sa
m

pl
eR

TT

Retransmission

page 203/29/05 CSE 364: Computer Networks

Jacobson’s Retransmission Timeout
Estimator
Key observation:

 Using β RTT for timeout doesn’t work
 At high loads round trip variance is high

Solution:
 If D denotes mean variation
 Timeout = RTT + 4D

page 213/29/05 CSE 364: Computer Networks

Jacobson/ Karels Algorithm

New Calculations for average RTT
Diff = SampleRTT - EstRTT
EstRTT = EstRTT + (d x Diff)
Dev = Dev + d(|Diff| - Dev)

 where d is a factor between 0 and 1

Consider variance when setting timeout value
TimeOut = m x EstRTT + f x Dev

 where m = 1 and f = 4

Notes
 algorithm only as good as granularity of clock (500ms on

Unix)
 accurate timeout mechanism important to congestion

control (later)

page 223/29/05 CSE 364: Computer Networks

Congestion

 If both sources send full windows, we may
get congestion collapse

Other forms of congestion collapse:
 Retransmissions of large packets after loss of a

single fragment
 Non-feedback controlled sources

10 Mbps

100 Mbps

1.5 Mbps

page 233/29/05 CSE 364: Computer Networks

Congestion Response

load

throughput

load

delay

Avoidance keeps the system performing at
the knee
Control kicks in once the system has
reached a congested state

page 243/29/05 CSE 364: Computer Networks

Separation of Functionality

Sending host must adjust amount of data it puts in
the network based on detected congestion

Routers can help by:
 Sending accurate congestion signals
 Isolating well-behaved from ill-behaved sources

