
page 13/29/05 CSE 364: Computer Networks

TCP Overview

Connection-oriented
Byte-stream

 app writes bytes
 TCP sends segments
 app reads bytes

Application process

Write
bytes

TCP
Send buffer

Segment Segment Segment
Transmit segments

Application process

Read
bytes

TCP
Receive buffer

…

… …

 Full duplex
 Flow control: keep sender from

overrunning receiver
 Congestion control: keep sender

from overrunning network



page 23/29/05 CSE 364: Computer Networks

Remember

TCP: Segments, IP: packets, Ethernet: Frames
TCP segments are encapsulated as IP data which

are encapsulated as Ethernet frame data



page 33/29/05 CSE 364: Computer Networks

Data Link Versus Transport (TCP)

Potentially connects many different hosts
 need explicit connection establishment and termination

 TCP three way hand-shake

Potentially different RTT
 need adaptive timeout mechanism

Potentially long delay in network
 need to be prepared for arrival of very old packets

 Sequence number space should be well thought out

Potentially different capacity at destination
 need to accommodate different node capacity

 Flow control

Potentially different network capacity
 need to be prepared for network congestion

 Congestion control



page 43/29/05 CSE 364: Computer Networks

Segment Format

Options (variable)

Data

Checksum

SrcPort DstPort

HdrLen 0 Flags

UrgPtr

AdvertisedWindow

SequenceNum

Acknowledgment

0 4 10 16 31



page 53/29/05 CSE 364: Computer Networks

Segment Format (cont)

Each connection identified with 4-tuple:
 (SrcPort, SrcIPAddr, DstPort, DstIPAddr)

Sliding window + flow control
acknowledgment, SequenceNum, AdvertisedWindow

Flags
SYN, FIN, RESET, PUSH, URG, ACK

Checksum
pseudo header + TCP header + data

Sender

Data (SequenceNum)

Acknowledgment +
AdvertisedWindow

Receiver



page 63/29/05 CSE 364: Computer Networks

Sequence Number Selection

 Initial sequence number (ISN) selection
 Why not simply chose 0?

 Must avoid overlap with earlier incarnation.
 New sequence number should be larger than previous

number.
 Why can’t the system remember the previous number

used?

Requirements for ISN selection
 Must operate correctly

 Without synchronized clocks
 Despite node failures



page 73/29/05 CSE 364: Computer Networks

ISN and Quiet Time

Use local clock to select ISN
 Clock wraparound must be greater than max segment

lifetime (MSL)

Upon startup, cannot assign sequence numbers
for MSL seconds

Can still have sequence number overlap
 If sequence number space not large enough for high-

bandwidth connections



page 83/29/05 CSE 364: Computer Networks

Connection Establishment
Active participant

(client)
Passive participant

(server)SYN, SequenceNum = x

SYN + ACK, SequenceNum = y

Acknowledgment = x+1 

ACK, Acknowledgment = y + 1

Three way handshake



page 93/29/05 CSE 364: Computer Networks

Connection Tear-down

Normal termination
 Allow unilateral close
 Avoid sequence number overlap

TCP must continue to receive data even after
closing
 Cannot close connection immediately: what if a new

connection restarts and uses same sequence number
and receives retransmitted FIN from the current session?



page 103/29/05 CSE 364: Computer Networks

Tear-down Packet Exchange

Sender Receiver
FIN

FIN-ACK

FIN

FIN-ACK

Data write

Data ack



page 113/29/05 CSE 364: Computer Networks

State Transition Diagram
CLOSED

LISTEN

SYN_RCVD SYN_SENT

ESTABLISHED

CLOSE_WAIT

LAST_ACKCLOSING

TIME_WAIT

FIN_WAIT_2

FIN_WAIT_1

Passive open Close

Send/SYN
SYN/SYN + ACK

SYN + ACK/ACK

SYN/SYN + ACK

ACK

Close/FIN

FIN/ACKClose/FIN

FIN/ACKACK + FIN/ACK
Timeout after two 
segment lifetimes

FIN/ACK
ACK

ACK

ACK

Close/FIN

Close

CLOSED

Active open/SYN



page 123/29/05 CSE 364: Computer Networks

Sliding Window Revisited

 Sending side
 LastByteAcked < =

LastByteSent
 LastByteSent < =

LastByteWritten
 buffer bytes between

LastByteAcked and
LastByteWritten

Sending application

LastByteWritten

TCP

LastByteSentLastByteAcked

Receiving application

LastByteRead

TCP

LastByteRcvdNextByteExpected

 Receiving side
 LastByteRead <

NextByteExpected
 NextByteExpected < =

LastByteRcvd +1
 buffer bytes between

NextByteRead and
LastByteRcvd



page 133/29/05 CSE 364: Computer Networks

Flow Control

Fast sender can overrun receiver:
 Packet loss, unnecessary retransmissions

Possible solutions:
 Sender transmits at pre-negotiated rate
 Sender limited to a window’s worth of unacknowledged

data

Flow control different from congestion control



page 143/29/05 CSE 364: Computer Networks

Flow Control

 Send buffer size: MaxSendBuffer
 Receive buffer size: MaxRcvBuffer
 Receiving side

 LastByteRcvd - LastByteRead < = MaxRcvBuffer
 AdvertisedWindow = MaxRcvBuffer - (NextByteExpected -

NextByteRead)
 Sending side

 LastByteSent - LastByteAcked < = AdvertisedWindow
 EffectiveWindow = AdvertisedWindow - (LastByteSent -

LastByteAcked)
 LastByteWritten - LastByteAcked < = MaxSendBuffer
 block sender if (LastByteWritten - LastByteAcked) + y >

MaxSenderBuffer
 Always send ACK in response to arriving data segment
 Persist when AdvertisedWindow = 0



page 153/29/05 CSE 364: Computer Networks

Round-trip Time Estimation

Wait at least one RTT before retransmitting
 Importance of accurate RTT estimators:

 Low  RTT -> unneeded retransmissions
 High RTT -> poor throughput

RTT estimator must adapt to change in RTT
 But not too fast, or too slow!

Problem: If the instantaneously calculated RTT is
10, 20, 5, 12, 3 , 5, 6; what RTT should we use for
calculations?



page 163/29/05 CSE 364: Computer Networks

Initial Round-trip Estimator

Round trip times exponentially averaged:
 New RTT = α (old RTT) + (1 - α) (new sample)
 Recommended value for α: 0.8 - 0.9
 Retransmit timer set to β RTT, where β = 2
 Every time timer expires, RTO exponentially backed-off



page 173/29/05 CSE 364: Computer Networks

Retransmission Ambiguity

A B

ACK

Sample
RTT

A B
Original transmission

retransmission
Sample
RTT

Original transmission

retransmission

ACK



page 183/29/05 CSE 364: Computer Networks

Karn’s Retransmission Timeout
Estimator
Accounts for retransmission ambiguity
 If a segment has been retransmitted:

 Don’t count RTT sample on ACKs for this segment
 Keep backed off time-out for next packet
 Reuse RTT estimate only after one successful

transmission



page 193/29/05 CSE 364: Computer Networks

Karn/Partridge Algorithm

Do not sample RTT when retransmitting
Double timeout after each retransmission

Sender Receiver

Original transmission

ACKSa
m

pl
eR

TT

Retransmission

Sender Receiver

Original transmission

ACK

Sa
m

pl
eR

TT

Retransmission



page 203/29/05 CSE 364: Computer Networks

Jacobson’s Retransmission Timeout
Estimator
Key observation:

 Using β RTT for timeout doesn’t work
 At high loads round trip variance is high

Solution:
 If D denotes mean variation
 Timeout = RTT + 4D



page 213/29/05 CSE 364: Computer Networks

Jacobson/ Karels Algorithm

New Calculations for average RTT
Diff = SampleRTT - EstRTT
EstRTT = EstRTT + (d x Diff)
Dev = Dev + d( |Diff| - Dev)

 where d is a factor between 0 and 1

Consider variance when setting timeout value
TimeOut = m x EstRTT + f x Dev

 where m = 1 and f = 4

Notes
 algorithm only as good as granularity of clock (500ms on

Unix)
 accurate timeout mechanism important to congestion

control (later)



page 223/29/05 CSE 364: Computer Networks

Congestion

 If both sources send full windows, we may
get congestion collapse

Other forms of congestion collapse:
 Retransmissions of large packets after loss of a

single fragment
 Non-feedback controlled sources

10 Mbps

100 Mbps

1.5 Mbps



page 233/29/05 CSE 364: Computer Networks

Congestion Response

load

throughput

load

delay

Avoidance keeps the system performing at
the knee
Control kicks in once the system has
reached a congested state



page 243/29/05 CSE 364: Computer Networks

Separation of Functionality

Sending host must adjust amount of data it puts in
the network based on detected congestion

Routers can help by:
 Sending accurate congestion signals
 Isolating well-behaved from ill-behaved sources


