
page 13/24/05 CSE 364: Computer Networks

Internet routing

Problem: Route from any node to any other node
 IP addresses are split into network numbers, route

towards the network
 Network addresses are split into subnetworks at the local

site - route towards the subnetwork which contains the
destination

 All nodes within a given subnetwork will be bridged, go
through bridges (transparent to IP) to reach the dest.

E.g. routing from yahoo.com to this podium PC
 Yahoo server routes to nd network (backbone)
 Nd forwards to debartolo (site)
 Bridged from router to 1st floor bridge to wing bridge

page 23/24/05 CSE 364: Computer Networks

Route Propagation

Know a smarter router
hosts know local router (simplicity)
 local routers know site routers
site routers know core router
core routers know everything (complex)

Autonomous System (AS)
corresponds to an administrative domain
examples: University, company, backbone network
assign each AS a 16-bit number

Two-level route propagation hierarchy
 interior gateway protocol (each AS selects its own)
exterior gateway protocol (Internet-wide standard)

page 33/24/05 CSE 364: Computer Networks

Popular Interior Gateway Protocols

RIP: Route Information Protocol
 developed for XNS
 distributed with Unix
 distance-vector algorithm
 based on hop-count

OSPF: Open Shortest Path First
 recent Internet standard
 uses link-state algorithm
 supports load balancing
 supports authentication

page 43/24/05 CSE 364: Computer Networks

EGP: Exterior Gateway Protocol

Overview
 designed for tree-structured Internet
 concerned with reachability, not optimal routes

Protocol messages
 neighbor acquisition: one router requests that another be

its peer; peers exchange reachability information
 neighbor reachability: one router periodically tests if the

another is still reachable; exchange HELLO/ACK
messages; uses a k-out-of-n rule

 routing updates: peers periodically exchange their
routing tables (distance-vector)

page 53/24/05 CSE 364: Computer Networks

BGP-4: Border Gateway Protocol

AS Types
 stub AS: has a single connection to one other AS

 carries local traffic only
 multihomed AS: has connections to more than one AS

 refuses to carry transit traffic
 transit AS: has connections to more than one AS

 carries both transit and local traffic

Each AS has:
 one or more border routers
 one BGP speaker that advertises:

 local networks
 other reachable networks (transit AS only)
 gives path information

page 63/24/05 CSE 364: Computer Networks

Regional provider A
(AS 2)

Regional provider B
(AS 3)

Customer P
(AS 4)

Customer Q
(AS 5)

Customer R
(AS 6)

Customer S
(AS 7)

128.96
192.4.153

192.4.32
192.4.3

192.12.69

192.4.54
192.4.23

Backbone network
(AS 1)

BGP Example

Speaker for AS2 advertises reachability to P and Q
network 128.96, 192.4.153, 192.4.32, and 192.4.3, can

be reached directly from AS2

Speaker for backbone advertises
networks 128.96, 192.4.153, 192.4.32, and 192.4.3 can

be reached along the path (AS1, AS2).
Speaker can cancel previously advertised paths

page 73/24/05 CSE 364: Computer Networks

Summary

We have seen techniques to globally name nodes
(ipv4, ipv6), mechanisms to map from global
names to IP address (DNS), IP addresses to
physical address (ARP), route from local to site
router (bridge), within site (RIP), and the internet
(BGP).

We can connect from any host to any other host

Next problem is, how do we get these hosts to
communicate and do interesting things

page 83/24/05 CSE 364: Computer Networks

End-to-End Protocols

Underlying best-effort network
 drop messages
 re-orders messages
 delivers duplicate copies of a given message
 limits messages to some finite size
 delivers messages after an arbitrarily long delay

Common end-to-end services
 guarantee message delivery
 deliver messages in the same order they are sent
 deliver at most one copy of each message
 support arbitrarily large messages
 support synchronization
 allow the receiver to flow control the sender
 support multiple application processes on each host

page 93/24/05 CSE 364: Computer Networks

UDP message queue
Application

process
Application

process
Application

process

UDP

Packets arrive

Ports

Queues

Packets
demultiplexed

page 103/24/05 CSE 364: Computer Networks

Simple De-multiplexor (UDP)

Unreliable and unordered datagram service
No flow control, sender and receiver are not

capable of caring for what the network can handle
Adds multiplexing: endpoints identified by ports

 servers have well-known ports
 see /etc/services on Unix

Header format

Optional checksum
 psuedo header + UDP header + data

SrcPort DstPort

ChecksumLength

Data

0 16 31

page 113/24/05 CSE 364: Computer Networks

TCP Overview

Connection-oriented
Byte-stream

 app writes bytes
 TCP sends segments
 app reads bytes

Application process

Write
bytes

TCP
Send buffer

Segment Segment Segment
Transmit segments

Application process

Read
bytes

TCP
Receive buffer

…

… …

 Full duplex
 Flow control: keep sender from

overrunning receiver
 Congestion control: keep sender

from overrunning network

page 123/24/05 CSE 364: Computer Networks

Data Link Versus Transport

Potentially connects many different hosts
 need explicit connection establishment and termination

Potentially different RTT
 need adaptive timeout mechanism

Potentially long delay in network
 need to be prepared for arrival of very old packets

Potentially different capacity at destination
 need to accommodate different node capacity

Potentially different network capacity
 need to be prepared for network congestion

page 133/24/05 CSE 364: Computer Networks

Segment Format

Options (variable)

Data

Checksum

SrcPort DstPort

HdrLen 0 Flags

UrgPtr

AdvertisedWindow

SequenceNum

Acknowledgment

0 4 10 16 31

page 143/24/05 CSE 364: Computer Networks

Segment Format (cont)

Each connection identified with 4-tuple:
 (SrcPort, SrcIPAddr, DstPort, DstIPAddr)

Sliding window + flow control
acknowledgment, SequenceNum, AdvertisedWindow

Flags
SYN, FIN, RESET, PUSH, URG, ACK

Checksum
pseudo header + TCP header + data

Sender

Data (SequenceNum)

Acknowledgment +
AdvertisedWindow

Receiver

page 153/24/05 CSE 364: Computer Networks

Sequence Number Selection

 Initial sequence number (ISN) selection
 Why not simply chose 0?

 Must avoid overlap with earlier incarnation

Requirements for ISN selection
 Must operate correctly

 Without synchronized clocks
 Despite node failures

page 163/24/05 CSE 364: Computer Networks

ISN and Quiet Time

Use local clock to select ISN
 Clock wraparound must be greater than max segment

lifetime (MSL)

Upon startup, cannot assign sequence numbers
for MSL seconds

Can still have sequence number overlap
 If sequence number space not large enough for high-

bandwidth connections

page 173/24/05 CSE 364: Computer Networks

Connection Establishment and
Termination

Active participant
(client)

Passive participant
(server)SYN, SequenceNum = x

SYN + ACK, SequenceNum = y

Acknowledgment = x+1

ACK, Acknowledgment = y + 1

Three way handshake

page 183/24/05 CSE 364: Computer Networks

Connection Tear-down

Normal termination
 Allow unilateral close
 Avoid sequence number overlap

TCP must continue to receive data even after
closing
 Cannot close connection immediately: what if a new

connection restarts and uses same sequence number
and receives retransmitted FIN from the current session?

page 193/24/05 CSE 364: Computer Networks

Tear-down Packet Exchange

Sender Receiver
FIN

FIN-ACK

FIN

FIN-ACK

Data write

Data ack

page 203/24/05 CSE 364: Computer Networks

State Transition Diagram
CLOSED

LISTEN

SYN_RCVD SYN_SENT

ESTABLISHED

CLOSE_WAIT

LAST_ACKCLOSING

TIME_WAIT

FIN_WAIT_2

FIN_WAIT_1

Passive open Close

Send/SYN
SYN/SYN + ACK

SYN + ACK/ACK

SYN/SYN + ACK

ACK

Close/FIN

FIN/ACKClose/FIN

FIN/ACKACK + FIN/ACK
Timeout after two
segment lifetimes

FIN/ACK
ACK

ACK

ACK

Close/FIN

Close

CLOSED

Active open/SYN

page 213/24/05 CSE 364: Computer Networks

Sliding Window Revisited

 Sending side
 LastByteAcked < =

LastByteSent
 LastByteSent < =

LastByteWritten
 buffer bytes between

LastByteAcked and
LastByteWritten

Sending application

LastByteWritten

TCP

LastByteSentLastByteAcked

Receiving application

LastByteRead

TCP

LastByteRcvdNextByteExpected

 Receiving side
 LastByteRead <

NextByteExpected
 NextByteExpected < =

LastByteRcvd +1
 buffer bytes between

NextByteRead and
LastByteRcvd

page 223/24/05 CSE 364: Computer Networks

Flow Control

Fast sender can overrun receiver:
 Packet loss, unnecessary retransmissions

Possible solutions:
 Sender transmits at pre-negotiated rate
 Sender limited to a window’s worth of unacknowledged

data

Flow control different from congestion control

page 233/24/05 CSE 364: Computer Networks

Flow Control

 Send buffer size: MaxSendBuffer
 Receive buffer size: MaxRcvBuffer
 Receiving side

 LastByteRcvd - LastByteRead < = MaxRcvBuffer
 AdvertisedWindow = MaxRcvBuffer - (NextByteExpected -

NextByteRead)
 Sending side

 LastByteSent - LastByteAcked < = AdvertisedWindow
 EffectiveWindow = AdvertisedWindow - (LastByteSent -

LastByteAcked)
 LastByteWritten - LastByteAcked < = MaxSendBuffer
 block sender if (LastByteWritten - LastByteAcked) + y >

MaxSenderBuffer
 Always send ACK in response to arriving data segment
 Persist when AdvertisedWindow = 0

page 243/24/05 CSE 364: Computer Networks

Round-trip Time Estimation

Wait at least one RTT before retransmitting
 Importance of accurate RTT estimators:

 Low RTT -> unneeded retransmissions
 High RTT -> poor throughput

RTT estimator must adapt to change in RTT
 But not too fast, or too slow!

Problem: If the instantaneously calculated RTT is
10, 20, 5, 12, 3 , 5, 6; what RTT should we use for
calculations?

page 253/24/05 CSE 364: Computer Networks

Initial Round-trip Estimator

Round trip times exponentially averaged:
 New RTT = α (old RTT) + (1 - α) (new sample)
 Recommended value for α: 0.8 - 0.9
 Retransmit timer set to β RTT, where β = 2
 Every time timer expires, RTO exponentially backed-off

page 263/24/05 CSE 364: Computer Networks

Retransmission Ambiguity

A B

ACK

Sample
RTT

A B
Original transmission

retransmission
Sample
RTT

Original transmission

retransmission

ACK

page 273/24/05 CSE 364: Computer Networks

Karn’s Retransmission Timeout
Estimator
Accounts for retransmission ambiguity
 If a segment has been retransmitted:

 Don’t count RTT sample on ACKs for this segment
 Keep backed off time-out for next packet
 Reuse RTT estimate only after one successful

transmission

page 283/24/05 CSE 364: Computer Networks

Karn/Partridge Algorithm

Do not sample RTT when retransmitting
Double timeout after each retransmission

Sender Receiver

Original transmission

ACKSa
m

pl
eR

TT

Retransmission

Sender Receiver

Original transmission

ACK

Sa
m

pl
eR

TT

Retransmission

page 293/24/05 CSE 364: Computer Networks

Jacobson’s Retransmission Timeout
Estimator
Key observation:

 Using β RTT for timeout doesn’t work
 At high loads round trip variance is high

Solution:
 If D denotes mean variation
 Timeout = RTT + 4D

page 303/24/05 CSE 364: Computer Networks

Jacobson/ Karels Algorithm

New Calculations for average RTT
Diff = SampleRTT - EstRTT
EstRTT = EstRTT + (d x Diff)
Dev = Dev + d(|Diff| - Dev)

 where d is a factor between 0 and 1

Consider variance when setting timeout value
TimeOut = m x EstRTT + f x Dev

 where m = 1 and f = 4

Notes
 algorithm only as good as granularity of clock (500ms on

Unix)
 accurate timeout mechanism important to congestion

control (later)

