Outline

We are focusing on routing algorithms in the last lecture

We will look at subnetting and how routing protocols are applied to the larger network hierarchy

Example

Destination	Cost N	lextHop
Α	1	А
С	1	С
D	2	С
E	2	А
F	2	А
G	3	А

Routing Loops

- Example 1
 - F detects that link to G has failed
 - F sets distance to G to infinity and sends update to A
 - A sets distance to G to infinity since it uses F to reach G
 - A receives periodic update from C with 2-hop path to G
 - A sets distance to G to 3 and sends update to F
 - F decides it can reach G in 4 hops via A
- Example 2: count to infinity problem
 - link from A to E fails
 - A advertises distance of infinity to E
 - B and C advertise a distance of 2 to E
 - B decides it can reach E in 3 hops; advertises this to A
 - A decides it can read E in 4 hops; advertises this to C
 - C decides that it can reach E in 5 hops...

Loop-Breaking Heuristics

- Set infinity to 16
- Split horizon: node does not send routing updates back to the neighbor
- Split horizon with poison reverse: sends negative information back to the neighbor

Link State (e.g. OSPF)

- Strategy
 - send to all nodes (not just neighbors) information about directly connected links (not entire routing table)
- Link State Packet (LSP)
 - id of the node that created the LSP
 - cost of link to each directly connected neighbor
 - sequence number (SEQNO)
 - time-to-live (TTL) for this packet

Link State (cont)

- Reliable flooding
 - store most recent LSP from each node
 - forward LSP to all nodes but one that sent it
 - generate new LSP periodically
 - increment SEQNO
 - start SEQNO at 0 when reboot
 - decrement TTL of each stored LSP
 - discard when TTL=0

Route Calculation

- Dijkstra's shortest path algorithm
- Let
 - N denotes set of nodes in the graph
 - I (i, j) denotes non-negative cost (weight) for edge (i, j)
 - s denotes this node
 - M denotes the set of nodes incorporated so far
 - C(n) denotes cost of the path from s to node n

$$M = \{s\}$$
for each n in N - $\{s\}$

$$C(n) = I(s, n)$$
while $(N != M)$

$$M = M \text{ union } \{w\} \text{ such that } C(w) \text{ is the minimum for all } w \text{ in } (N - M)$$
for each n in $(N - M)$

$$C(n) = MIN(C(n), C(w) + I(w, n))$$

Route cost metrics

- Original ARPANET metric
 - measures number of packets queued on each link
 - took neither latency or bandwidth into consideration
- New ARPANET metric
 - stamp each incoming packet with its arrival time (AT)
 - record departure time (DT)
 - when link-level ACK arrives, compute
 - Delay = (DT AT) + Transmit + Latency
 - if timeout, reset DT to departure time for retransmission
 - link cost = average delay over some time period
- Fine Tuning
 - compressed dynamic range
 - replaced Delay with link utilization

Mobility

- What if nodes move
 - You need a new IP address when you move
 - Communications (sockets) have to be reestablished
 - One solution is to use Dynamic DNS with DHCP
 - Used at ND
 - When a host moves, DHCP gives it a new address and Dynamic DNS updates the DNS entry with the new DHCP address
 - For example, my laptop is called kural.cse.nd.edu, but may map into different IP addresses depending on where I am
 - Works for new connections, old connections break
 - Can only work within the same domain (because DNS servers are only administered for the domain)

Mobile IP

Mobile host registers with Foreign Agent. FA informs Home Agent. HA tunnels packets to FA. Communications through the Home address.

Internet Structure - Past

Internet Structure - Today

Subnetting

- Add another level to address/routing hierarchy: subnet
- Subnet masks define variable partition of host part
- Subnets visible only within site

Subnet Example

Subnet mask: 255.255.255.128 Subnet number: 128.96.34.0

Subnet mask: 255.255.255.0 Subnet number: 128.96.33.0

Subnet Number	\$ubnet Mask	Next Hop
128.96.34.0	255.255.255.128	interface 0
128.96.34.128	255.255.255.128	interface 1
128.96.33.0	255.255.255.0	R2

Forwarding Algorithm

```
D = destination IP address
for each entry (SubnetNum, SubnetMask, NextHop)
  D1 = SubnetMask & D
  if D1 = SubnetNum
    if NextHop is an interface
        deliver datagram directly to D
    else
        deliver datagram to NextHop
```

- Use a default router if nothing matches
- Not necessary for all 1s in subnet mask to be contiguous
- Can put multiple subnets on one physical network
- Subnets not visible from the rest of the Internet

Supernetting

- Assign block of contiguous network numbers to nearby networks
- Called CIDR: Classless Inter-Domain Routing
- Represent blocks with a single pair (first network address, count)
- Restrict block sizes to powers of 2
- Use a bit mask (CIDR mask) to identify block size
- All routers must understand CIDR addressing

Route Propagation

- Know a smarter router
 - hosts know local router
 - local routers know site routers
 - site routers know core router
 - core routers know everything
- Autonomous System (AS)
 - corresponds to an administrative domain
 - examples: University, company, backbone network
 - assign each AS a 16-bit number
- Two-level route propagation hierarchy
 - interior gateway protocol (each AS selects its own)
 - exterior gateway protocol (Internet-wide standard)

Popular Interior Gateway Protocols

- RIP: Route Information Protocol
 - developed for XNS
 - distributed with Unix
 - distance-vector algorithm
 - based on hop-count
- OSPF: Open Shortest Path First
 - recent Internet standard
 - uses link-state algorithm
 - supports load balancing
 - supports authentication

EGP: Exterior Gateway Protocol

Overview

- designed for tree-structured Internet
- concerned with reachability, not optimal routes
- Protocol messages
 - neighbor acquisition: one router requests that another be its peer; peers exchange reachability information
 - neighbor reachability: one router periodically tests if the another is still reachable; exchange HELLO/ACK messages; uses a k-out-of-n rule
 - routing updates: peers periodically exchange their routing tables (distance-vector)

BGP-4: Border Gateway Protocol

- AS Types
 - stub AS: has a single connection to one other AS
 - carries local traffic only
 - multihomed AS: has connections to more than one AS
 - refuses to carry transit traffic
 - transit AS: has connections to more than one AS
 - carries both transit and local traffic
- Each AS has:
 - one or more border routers
 - one BGP speaker that advertises:
 - local networks
 - other reachable networks (transit AS only)
 - gives path information

BGP Example

- Speaker for AS2 advertises reachability to P and Q
 - network 128.96, 192.4.153, 192.4.32, and 192.4.3, can be reached directly from AS2

- Speaker for backbone advertises
 - networks 128.96, 192.4.153, 192.4.32, and 192.4.3 can be reached along the path (AS1, AS2).
- Speaker can cancel previously advertised paths

Peering and Transits

- ▶ Thousands of ISPs. ISPs connect using transit providers and backbone providers to route packets
- Decisions are made on business goals and \$\$\$
- Peering does not give access to other peering points, I.e. peering is non-transitive
- No explicit service level agreement (SLA)
- Peering can be cheaper
 - For example, Notre Dame can peer with Ameritech and ATT to transfer mutual traffic (from DSL and Cable customers)
 - Lower latency to preferred ISPs

Notre Dame to Saint Marys

traceroute www.saintmarys.edu

- traceroute to www.saintmarys.edu (147.53.8.10), 30 hops max, 40 byte packets
- 1 eafs-e06.gw.nd.edu (129.74.250.1) 0.664 ms 0.469 ms 0.450 ms
- 2 c245-e01.gw.nd.edu (129.74.245.14) 0.301 ms 0.574 ms 0.345 ms
- 3 monk-fe00.gw.nd.edu (129.74.45.4) 1.046 ms 0.918 ms 0.823 ms
- 4 klimek-i00.gw.nd.edu (129.74.248.102) 4.784 ms 4.569 ms 4.688 ms
- mren-m10-lsd6509.startap.net (206.220.240.86) 4.863 ms 5.884 ms 6.659 ms
- 6 chin-mren-ge.abilene.ucaid.edu (198.32.11.97) 5.234 ms 4.512 ms 4.879 ms
- 7 iplsng-chinng.abilene.ucaid.edu (198.32.8.77) 15.137 ms 22.735 ms 8.524 ms
- **8** ul-abilene.indiana.gigapop.net (192.12.206.250) 8.584 ms 9.009 ms 8.814 ms
- 9 ihets-gw-1-ge15-0.ind.net (157.91.6.37) 8.458 ms 8.581 ms 8.823 ms
- 10 sbn-fa0-0.ind.net (199.8.76.73) 9.256 ms 8.826 ms 8.638 ms
- 11 stmarys-edu-T1.ind.net (199.8.73.110) 30.135 ms 26.131 ms 25.682 ms
- 12 * * smcswitch.saintmarys.edu (147.53.1.1) 31.876 ms !X

Reasons why you don't peer

- No explicit SLA
- Use cold-potato algorithm to offset traffic costs
 - Carry traffic in your local network as much as possible rather than use an optimal (possibly more expensive transit route)
 - Transit points use hot potato algorithm, dumping the packets as soon as possible to the back bone (even if it was not optimal)
- Don't want to help potential competitors
 - Ameritech would want your friends to move to Ameritech so that you all can get faster traffic, not peer with AT&T so that you can enjoy the benefit

