Mid term grade distribution

--- HWA #1 --- HWP #1 --- HWA #2 --- Mid term --- Total

Internet

 collection of networks, each of which can be different types of networks

3/15/05

The packet goes through different network protocols as it

IP Internet

Protocol Stack view

Service Model

- Connectionless (datagram-based)
 - Each datagram carries the destination address
- Best-effort delivery (unreliable service)
 - packets may be lost
 - packets can be delivered out of order
 - duplicate copies of a packet can be delivered
 - packets can be delayed for a long time

Issues

- Global naming (IP addresses) and mechanisms to translate to human usable form (e.g. <u>www.nd.edu</u>) (DNS)
- 2. Fragmentation not all networks can deal with a given packet size
- 3. Routing, mapping ip address to physical address etc..

Issue 1: Global Addresses

- As we connect different types of networks, need a way to address each host, independent of the network type (ethernet, FDDI etc.)
 - Darwin.cc.nd.edu's address is 08:00:20:7e:16:cc
- Properties (www.iana.org/assignments/ipv4-address-space)
 - globally unique
 - hierarchical: network + host, so that we can use it to route
 - http://www.caida.org/outreach/resources/learn/ipv4space/

3/15/05

CSE 364: Computer Networks

Darwin.cc.nd.edu

Darwin.cc.nd.edu = 129.74.250.114

1000001.01001010.11111010.01110010

Class B address, ND owns 129.74.X.X

3/15/05

Domain Name Service (DNS)

- Provides Internet domain name to IP address translation
 - Domain name translation (nd.edu)
 - Hostname translation (wizard.cse.nd.edu)
 - Service location (MX records, mail service for ND)
- Use nslookup command to interact with DNS

DNS Name Server Hierarchy

DNS servers are organized into a hierarchy that mirrors the name space.

Specific servers are designated as authoritative for portions of the name space.

Servers may delegate management of *subdomains* to child name servers.

Parents refer subdomain queries to their

children.

Source: Jeff Chase

Multicast DNS (Apple Rendezvous)

- Situations where there are no DNS servers (local intranet - for example home users who want to name the machines without dealing with the complexities of maintaining DNS servers) or where you may not know where the DNS servers are
- Create names in the .local domain. For example, my laptop can be called surendar.local.
- Zeroconf initiative

IP v4 Datagram format

IP v6 format

- Developed so that we can address more than 2^32 hosts (ipv4)
- http://ipv6.internet2.edu/boston/presentations/09ipv6-under-the-hood.ppt
 - Version (4 bits) only field to keep same position and name
 - Class (8 bits) was Type of Service (TOS), renamed
 - Flow Label (20 bits) new field
 - Payload Length (16 bits) length of data, slightly different from total length
 - Next Header (8 bits) type of the next header, new idea
 - Hop Limit (8 bits) was time-to-live, renamed
 - Source address (128 bits)
 - Destination address (128 bits)

IPv4 and IPv6 headers

Version	C	lass		Flow Label			
	Payload Length		Next Header		Hop Limit		
						ξu.	
	Source Address						
Destination Address							
							5
Version	IHL	Type of S	Service		Total	Length	
	Identification			Flags	Fragment Offset		
Time	-to-live	Proto	ocol	Header Checksum			
Source Address							
Destination Address							
Options			Padding	_			
	0// = /0 =				an Niaturaulia		

Basic Headers - IPV6

Simplifications

- Fixed length of all fields, not like old options field IHL, or header length irrelevant
- Remove Header Checksum rely on checksums at other layers
- No hop-by-hop fragmentation fragment offset irrelevant
 - MTU discovery (IPv4 also support Path MTU discovery)
- Add extension headers next header type (sort of a protocol type, or replacement for options)
- Basic Principle: Routers along the way should do minimal processing

Issue 2: Fragmentation and Reassembly

- Cannot expect all networks to deal with the same packet size, can choose the absolute smallest but that would mean poor performance for all networks
 - Each network has some MTU (maximum transmission unit)
- Design decisions
 - fragment when necessary (MTU < Datagram)</p>
 - re-fragmentation is possible
 - fragments are self-contained datagrams
 - use CS-PDU (not cells) for ATM
 - delay reassembly until destination host
 - do not recover from lost fragments
 - try to avoid fragmentation at source host

Gateway13 example

 Ifconfig eth0 in gateway13.cse.nd.edu
Link encap:Ethernet HWaddr 00:07:E9:3C:8F:80
inet addr:129.74.154.198 Bcast:129.74.155.255
Mask:255.255.252.0
inet6 addr: fe80::207:e9ff:fe3c:8f80/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:9000 Metric:1

Issue 3: Datagram Forwarding

Strategy

- every datagram contains destination's address
- if connected to destination network, then forward to host
- if not directly connected, then forward to some router
- forwarding table maps network number into next hop
- each host has a default router
- each router maintains a forwarding table

(R2)Network number	Next		
1	R3		
2	R1		
3	Interface 1		
4	Interface 0		
	e (R2)Network number 1 2 3 4		

Address Translation

- Map IP addresses into physical addresses
 - destination host
 - next hop router
- Techniques
 - encode physical address in host part of IP address
 - table-based
- Mechanism to map IP to physical address: ARP
 - table of IP to physical address bindings
 - broadcast request if IP address not in table
 - target machine responds with its physical address
 - table entries are discarded if not refreshed

ARP Details

Request Format

- HardwareType: type of physical network (e.g., Ethernet)
- ProtocolType: type of higher layer protocol (e.g., IP)
- HLEN & PLEN: length of physical and protocol addresses
- Operation: request or response
- Source/Target-Physical/Protocol addresses

Notes

- table entries timeout in about 10 minutes
- update table with source when you are the target
- update table if already have an entry
- do not refresh table entries upon reference

ARP Packet Format

	0	8	3 1	6 3			
	I	Hardware type = 1		ProtocolType = 0x0800			
	HLen = 48		PLen = 32	Operation			
	SourceHardwareAddr (bytes 0 — 3)						
1	SourceHardwareAddr (bytes 4 -5) SourceProtocolAddr (bytes 0 -1)						
SourceProtocolAddr (bytes 2 — 3) TargetHardv			TargetHardwareAddr (bytes 0 — 1)				
	TargetHardwareAddr (bytes 2 — 5)						
	TargetProtocolAddr (bytes 0 – 3)						
9							

0

Sample arp table in darwin.cc.nd.edu

arp -a

Net to Media Table: IPv4

Device	IP Address	Mask	Flags	Phys Addr
		_		
hme0	eafs-e06.gw.nd.edu	255.255.255.255		00:d0:c0:d3:aa:40
hme0	bind.nd.edu	255.255.255.255		08:00:20:8a:5f:cf
hme0	honcho-jr.cc.nd.edu	255.255.255.255		00:b0:d0:82:83:7f
hme0	mail-vip.cc.nd.edu	255.255.255.255		02:e0:52:0c:56:c4
hme0	john.helios.nd.edu	255.255.255.255		08:00:20:85:db:c4
hme0	casper.helios.nd.edu	255.255.255.255		08:00:20:b1:f8:e1
hme0	pinky.helios.nd.edu	255.255.255.255		08:00:20:a9:88:30

3/15/05

ARP problems

- ARP trusts any response no authentication method
 - Works great at home, how about Notre Dame
- Replies which do not correspond to requests are allowed to update cache in many instances
- New information must supercede old info

Internet Control Message Protocol (ICMP)

- Mechanisms to notify of errors (not mandatory)
 - Echo (ping)
 - Redirect (from router to source host)
 - Destination unreachable (protocol, port, or host)
 - TTL exceeded (so datagrams don't cycle forever)
 - Checksum failed
 - Reassembly failed
 - Cannot fragment