Cell Switching (ATM)

- Connection-oriented packet-switched network
- Used in both WAN and LAN settings
- Signaling (connection setup) Protocol: Q.2931
- Specified by ATM forum
- Packets are called cells
 - 5-byte header + 48-byte payload
- Commonly transmitted over SONET
 - other physical layers possible

Variable vs Fixed-Length Packets

- No Optimal Length
 - if small: high header-to-data overhead
 - if large: low utilization for small messages
- Fixed-Length Easier to Switch in Hardware
 - simpler
 - enables parallelism

Big vs Small Packets

- Small Improves Queue behavior
 - finer-grained preemption point for scheduling link
 - maximum packet = 4KB
 - link speed = 100Mbps
 - transmission time = 4096 x 8/100 = 327.68us
 - high priority packet may sit in the queue 327.68us
 - in contrast, 53 x 8/100 = 4.24us for ATM
 - near cut-through behavior
 - two 4KB packets arrive at same time
 - link idle for 327.68us while both arrive
 - at end of 327.68us, still have 8KB to transmit
 - in contrast, can transmit first cell after 4.24us
 - at end of 327.68us, just over 4KB left in queue
Big vs Small (cont)

- Small Improves Latency (for voice)
 - voice digitally encoded at 64Kbps (8-bit samples at 8KHz)
 - need full cell’s worth of samples before sending cell
 - example: 1000-byte cells implies 125ms per cell (too long)
 - smaller latency implies no need for echo cancellers
- ATM Compromise: 48 bytes = (32+64)/2

Cell Format

- **User-Network Interface (UNI)**
 - GFC: Generic Flow Control (still being defined)
 - VCI: Virtual Circuit Identifier
 - VPI: Virtual Path Identifier
 - Type: management, congestion control, AAL5 (later)
 - CLPL: Cell Loss Priority
 - HEC: Header Error Check (CRC-8)

- **Network-Network Interface (NNI)**
 - switch-to-switch format
 - GFC becomes part of VPI field

Segmentation and Reassembly

- **ATM Adaptation Layer (AAL)**
 - AAL 1 and 2 designed for applications that need guaranteed rate (e.g., voice, video)
 - AAL 3/4 designed for packet data
 - AAL 5 is an alternative standard for packet data
AAL 3/4

- Convergence Sublayer Protocol Data Unit (CS-PDU)
- CPI: commerce part indicator (version field)
- Btag/Etag: beginning and ending tag
- BASize: hint on amount of buffer space to allocate
- Length: size of whole PDU

Cell Format

- Type
 - BOM: beginning of message
 - COM: continuation of message
 - EOM end of message
- SEQ: sequence of number
- MID: message id
- Length: number of bytes of PDU in this cell

AAL5

- CS-PDU Format
 - pad so trailer always falls at end of ATM cell
 - Length: size of PDU (data only)
 - CRC-32 (detects missing or misordered cells)
- Cell Format
 - end-of-PDU bit in Type field of ATM header
Workstation-Based

- Aggregate bandwidth
 - 1/2 of the I/O bus bandwidth
 - capacity shared among all hosts connected to switch
 - example: 1Gbps bus can support 5 x 100Mbps ports (in theory)

- Packets-per-second
 - must be able to switch small packets
 - 300,000 packets-per-second is achievable
 - e.g., 64-byte packets implies 155Mbps

Switching Hardware

- Design Goals
 - throughput (depends on traffic model)
 - scalability (a function of n)

- Ports
 - circuit management (e.g., map VCIs, route datagrams)
 - buffering (input and/or output)

- Fabric
 - as simple as possible
 - sometimes do buffering (internal)

Buffering

- Wherever contention is possible
 - input port (contend for fabric)
 - internal (contend for output port)
 - output port (contend for link)

- Head-of-Line Blocking
 - input buffering

Switching Hardware Diagram
Buffering Diagram
Crossbar Switches

Knockout Switch

- Example crossbar
- Concentrator
 - select 1 of n packets
- Complexity: n^2

Self-Routing Fabrics

- Banyan Network
 - constructed from simple 2 x 2 switching elements
 - self-routing header attached to each packet
 - elements arranged to route based on this header
 - no collisions if input packets sorted into ascending order
 - complexity: $n \log_2 n$
Self-Routing Fabrics (cont)

- Batcher Network
 - switching elements sort two numbers
 - some elements sort into ascending (clear)
 - some elements sort into descending (shaded)
 - elements arranged to implement merge sort
 - complexity: \(n \log_2 n \)

- Common Design: Batcher-Banyan Switch

High-Speed IP Router

- Switch (possibly ATM)
- Line Cards + Forwarding Engines
 - link interface
 - router lookup (input)
 - common IP path (input)
 - packet queue (output)
- Network Processor
 - routing protocol(s)
 - exceptional cases

High-Speed Router