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Overview

• Direct link networks
– Error detection - Section 2.4

– Reliable transmission - Section 2.5
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Error Detection

• Problem of detecting errors introduced into frames

• Specific mechanism that introduces errors depends
on the network technology - thermal, radio
interference etc.

• Sender introduces additional error detecting codes
that are based on the actual data. Receiver
recomputes the code for the received data. If the
computed code mis-matches the error code
computed by the sender; there was an error in the
transmission. Sender and receiver use the same
algorithm to create these codes.
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Two dimensional parity

• 7 bit data, add one parity bit

• Compute parity of all bit positions to create a single
parity byte for the entire frame

• Catches 1, 2, and 3 bit errors (most 4-bit errors)

Parity
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Internet Checksum Algorithm

• View message as a sequence of 16-bit integers;
sum using 16-bit ones-complement arithmetic; take
ones-complement of the result.

• Simple, last line of defense (e2e argument)

u_short cksum(u_short *buf, int count) {
   register u_long sum = 0;
   while (count--){
      sum += *buf++;
      if (sum & 0xFFFF0000){
         /* carry occurred, so wrap around */
         sum &= 0xFFFF;
         sum++;
      }
   }
   return ~(sum & 0xFFFF);
}
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Cyclic Redundancy Check

• Theoretical foundation lies in finite fields
• Offers stronger protection

• Represent n-bit message as n-1 degree polynomial
– e.g., MSG=10011010 as M(x) = x7 + x4 + x3 + x1

• Let k be the degree of some divisor polynomial
– e.g., C(x) = x3 + x2 + 1 (k = 3 here)

• C(x) is chosen apriori
• Add k bits of redundant data to an n-bit message

– want k << n
– e.g., in Ethernet, k = 32 and n = 12,000 (1500 bytes)
– Transmitted message is P(x)
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CRC (cont)

• Transmit polynomial P(x) that is evenly divisible by
C(x)
– shift left k bits, i.e., M(x).xk

– Divide by C(x) and find the remainder

– subtract remainder of M(x).xk/C(x) from M(x).xk

• Receiver polynomial P(x) + E(x)
– E(x) = 0 implies no errors

• Divide (P(x) + E(x)) by C(x); remainder zero if:
– E(x) was zero (no error), or

– E(x) is exactly divisible by C(x)

€ 
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Selecting C(x)

• All single-bit errors, as long as the xk and x0 terms
have non-zero coefficients.

• All double-bit errors, as long as C(x) contains a
factor with at least three terms

• Any odd number of errors, as long as C(x) contains
the factor (x + 1)

• Any ‘burst’ error (i.e., sequence of consecutive error
bits) for which the length of the burst is less than k
bits.

• Most burst errors of larger than k bits can also be
detected

• See Table 2.5 on page 96 for common C(x)
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CRC polynomials

• CRC-8: x8+x2+x1+1

• CRC-10: x10+x9+x5+x4+x1+1

• CRC-12: x12+x11+x3+x2+1

• CRC-16: x16+x15+x2+1

• CRC-CCITT: x16+x12+x5+1

• CRC-32: x32+x26+x23+x22+ x16+x12+x11+x10+x8

x7+x5+x4+x2+1

• Ethernet uses CRC-32

• HDLC: CRC-CCITT

• ATM: CRC-8, CRC-10, and CRC-32
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Reliable Transmission

• When corrupt frames are received and discarded,
want the network to recover from these errors

• Two fundamental mechanisms:
– Acknowledgement: A control message sent back to the

sender to notify correct receipt

– Timeout: If sender does not receive and Ack after timeout
interval, it should retransmit the original frame

• This general strategy is called ARQ: Automatic
Repeat Request
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Acknowledgements & Timeouts
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Stop-and-Wait

• Problem: keeping the pipe full
– (bandwidth delay product)

• Example
– 1.5Mbps link x 45ms RTT = 67.5Kb (8KB)

– 1 KB frames imples 1/8th link utilization

Sender Receiver
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Sliding Window

• Allow multiple outstanding (un-ACKed) frames

• Upper bound on un-ACKed frames, called window

Sender Receiver

Tim
e

…
…
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SW: Sender

• Assign sequence number to each frame (SeqNum)
• Maintain three state variables:

– send window size (SWS)
– last acknowledgment received (LAR)
– last frame sent (LFS)

• Maintain invariant: LFS - LAR <= SWS

• Advance LAR when ACK arrives
• Buffer up to SWS frames

≤ SWS

LAR LFS

… …
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SW: Receiver

• Maintain three state variables
– receive window size (RWS)
– largest frame acceptable (LFA)
– last frame received (LFR)

• Maintain invariant: LFA - LFR <= RWS

• Frame SeqNum arrives:
– if LFR < SeqNum < = LFA           accept
– if SeqNum < = LFR or SeqNum > LFA           discarded

• Send cumulative ACKs

≤
 RWS

LFR LFA

… …
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Acknowledgements

• Negative acknowledgment (NAK)
– When receiver receives frame which has a sequence

number higher than the next frame expected, receiver
proactively informs the sender to resend the missing
frame

• Selective ACK
– Acknowledge frames that it has received, not just the last

frame received



6

Jan-29-04 4/598N: Computer Networks

Sequence Number Space

• SeqNum field is finite; sequence numbers wrap around

• Sequence number space must be larger then number of
outstanding frames

• SWS <= MaxSeqNum-1 is not sufficient
– suppose 3-bit SeqNum field (0..7)

– SWS=RWS=7

– sender transmit frames 0..6

– arrive successfully, but ACKs lost

– sender retransmits 0..6

– receiver expecting 7, 0..5, but receives second incarnation of 0..5

• SWS < (MaxSeqNum+1)/2 is correct rule

• Intuitively, SeqNum “slides” between two halves of sequence
number space
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Concurrent Logical Channels

• Multiplex 8 logical channels over a single link

• Run stop-and-wait on each logical channel

• Maintain three state bits per channel
– channel busy

– current sequence number out

– next sequence number in

• Header: 3-bit channel num, 1-bit sequence num
– 4-bits total

– same as sliding window protocol

• Separates reliability from order


