
1

Jan-29-04 4/598N: Computer Networks

Overview

• Direct link networks
– Error detection - Section 2.4

– Reliable transmission - Section 2.5

Jan-29-04 4/598N: Computer Networks

Error Detection

• Problem of detecting errors introduced into frames

• Specific mechanism that introduces errors depends
on the network technology - thermal, radio
interference etc.

• Sender introduces additional error detecting codes
that are based on the actual data. Receiver
recomputes the code for the received data. If the
computed code mis-matches the error code
computed by the sender; there was an error in the
transmission. Sender and receiver use the same
algorithm to create these codes.

Jan-29-04 4/598N: Computer Networks

Two dimensional parity

• 7 bit data, add one parity bit

• Compute parity of all bit positions to create a single
parity byte for the entire frame

• Catches 1, 2, and 3 bit errors (most 4-bit errors)

Parity

2

Jan-29-04 4/598N: Computer Networks

Internet Checksum Algorithm

• View message as a sequence of 16-bit integers;
sum using 16-bit ones-complement arithmetic; take
ones-complement of the result.

• Simple, last line of defense (e2e argument)

u_short cksum(u_short *buf, int count) {
 register u_long sum = 0;
 while (count--){
 sum += *buf++;
 if (sum & 0xFFFF0000){
 /* carry occurred, so wrap around */
 sum &= 0xFFFF;
 sum++;
 }
 }
 return ~(sum & 0xFFFF);
}

Jan-29-04 4/598N: Computer Networks

Cyclic Redundancy Check

• Theoretical foundation lies in finite fields
• Offers stronger protection

• Represent n-bit message as n-1 degree polynomial
– e.g., MSG=10011010 as M(x) = x7 + x4 + x3 + x1

• Let k be the degree of some divisor polynomial
– e.g., C(x) = x3 + x2 + 1 (k = 3 here)

• C(x) is chosen apriori
• Add k bits of redundant data to an n-bit message

– want k << n
– e.g., in Ethernet, k = 32 and n = 12,000 (1500 bytes)
– Transmitted message is P(x)

Jan-29-04 4/598N: Computer Networks

CRC (cont)

• Transmit polynomial P(x) that is evenly divisible by
C(x)
– shift left k bits, i.e., M(x).xk

– Divide by C(x) and find the remainder

– subtract remainder of M(x).xk/C(x) from M(x).xk

• Receiver polynomial P(x) + E(x)
– E(x) = 0 implies no errors

• Divide (P(x) + E(x)) by C(x); remainder zero if:
– E(x) was zero (no error), or

– E(x) is exactly divisible by C(x)

€

3

Jan-29-04 4/598N: Computer Networks

Selecting C(x)

• All single-bit errors, as long as the xk and x0 terms
have non-zero coefficients.

• All double-bit errors, as long as C(x) contains a
factor with at least three terms

• Any odd number of errors, as long as C(x) contains
the factor (x + 1)

• Any ‘burst’ error (i.e., sequence of consecutive error
bits) for which the length of the burst is less than k
bits.

• Most burst errors of larger than k bits can also be
detected

• See Table 2.5 on page 96 for common C(x)

Jan-29-04 4/598N: Computer Networks

CRC polynomials

• CRC-8: x8+x2+x1+1

• CRC-10: x10+x9+x5+x4+x1+1

• CRC-12: x12+x11+x3+x2+1

• CRC-16: x16+x15+x2+1

• CRC-CCITT: x16+x12+x5+1

• CRC-32: x32+x26+x23+x22+ x16+x12+x11+x10+x8

x7+x5+x4+x2+1

• Ethernet uses CRC-32

• HDLC: CRC-CCITT

• ATM: CRC-8, CRC-10, and CRC-32

Jan-29-04 4/598N: Computer Networks

Reliable Transmission

• When corrupt frames are received and discarded,
want the network to recover from these errors

• Two fundamental mechanisms:
– Acknowledgement: A control message sent back to the

sender to notify correct receipt

– Timeout: If sender does not receive and Ack after timeout
interval, it should retransmit the original frame

• This general strategy is called ARQ: Automatic
Repeat Request

4

Jan-29-04 4/598N: Computer Networks

Acknowledgements & Timeouts

Sender Receiver
Frame

ACKTim
eo

ut

Tim
e

Sender Receiver
Frame

ACKTim
eo

ut

Frame

ACKTim
eo

ut
Sender Receiver

Frame

ACKTim
eo

ut

Frame

ACKTim
eo

ut
Sender Receiver

Frame

Tim
eo

ut

Frame

ACKTim
eo

ut

(a) (c)

(b) (d)

Jan-29-04 4/598N: Computer Networks

Stop-and-Wait

• Problem: keeping the pipe full
– (bandwidth delay product)

• Example
– 1.5Mbps link x 45ms RTT = 67.5Kb (8KB)

– 1 KB frames imples 1/8th link utilization

Sender Receiver

Jan-29-04 4/598N: Computer Networks

Sliding Window

• Allow multiple outstanding (un-ACKed) frames

• Upper bound on un-ACKed frames, called window

Sender Receiver

Tim
e

…
…

5

Jan-29-04 4/598N: Computer Networks

SW: Sender

• Assign sequence number to each frame (SeqNum)
• Maintain three state variables:

– send window size (SWS)
– last acknowledgment received (LAR)
– last frame sent (LFS)

• Maintain invariant: LFS - LAR <= SWS

• Advance LAR when ACK arrives
• Buffer up to SWS frames

≤ SWS

LAR LFS

… …

Jan-29-04 4/598N: Computer Networks

SW: Receiver

• Maintain three state variables
– receive window size (RWS)
– largest frame acceptable (LFA)
– last frame received (LFR)

• Maintain invariant: LFA - LFR <= RWS

• Frame SeqNum arrives:
– if LFR < SeqNum < = LFA accept
– if SeqNum < = LFR or SeqNum > LFA discarded

• Send cumulative ACKs

≤
 RWS

LFR LFA

… …

Jan-29-04 4/598N: Computer Networks

Acknowledgements

• Negative acknowledgment (NAK)
– When receiver receives frame which has a sequence

number higher than the next frame expected, receiver
proactively informs the sender to resend the missing
frame

• Selective ACK
– Acknowledge frames that it has received, not just the last

frame received

6

Jan-29-04 4/598N: Computer Networks

Sequence Number Space

• SeqNum field is finite; sequence numbers wrap around

• Sequence number space must be larger then number of
outstanding frames

• SWS <= MaxSeqNum-1 is not sufficient
– suppose 3-bit SeqNum field (0..7)

– SWS=RWS=7

– sender transmit frames 0..6

– arrive successfully, but ACKs lost

– sender retransmits 0..6

– receiver expecting 7, 0..5, but receives second incarnation of 0..5

• SWS < (MaxSeqNum+1)/2 is correct rule

• Intuitively, SeqNum “slides” between two halves of sequence
number space

Jan-29-04 4/598N: Computer Networks

Concurrent Logical Channels

• Multiplex 8 logical channels over a single link

• Run stop-and-wait on each logical channel

• Maintain three state bits per channel
– channel busy

– current sequence number out

– next sequence number in

• Header: 3-bit channel num, 1-bit sequence num
– 4-bits total

– same as sliding window protocol

• Separates reliability from order

