

- Problem with IntServ: scalability
- Idea: segregate packets into a small number of classes
 - e.g., premium vs best-effort
- Packets marked according to class at edge of network
- Core routers implement some per-hop-behavior (PHB)
- Example: Expedited Forwarding (EF)
- rate-limit EF packets at the edges
 - PHB implemented with class-based priority queues or Weighted Fair Queue (WFQ)

Apr-1-04 4/598N: Computer Networks

http://www.debone.com/videoLinks.html
<u>http://www.earthcam.com/usa/newyork/timessquare/</u> livestream.html
Apr-1-04 4/598N: Computer Networks

Chapter 8: Security	
Chapter 8: Security • Outline – Encryption Algorithms – Authentication Protocols – Message Integrity Protocols – Key Distribution – Firewalls	
Apr-1-04 4/598N: Computer Networks	

Message Digest Cryptographic checksum just as a regular checksum protects the receiver from accidental changes to the message, a cryptographic checksum protects the receiver from malicious changes to the message. One-way function given a cryptographic checksum for a message, it is virtually impossible to figure out what message produced that checksum; it is not computationally feasible to find two messages that hash to the same cryptographic checksum. Relevance if you are given a checksum for a message and you are able to compute exactly the same checksum for that message, then it is highly likely this message produced the checksum you were given.

IP Security

4/598N: Computer Networks

- Payload is in the clear text anyone in the middle can see it
- No way of knowing who the sender is just trust the header
- No way of knowing if the data was modified checks protect against network errors, not malicious attacks
- Solution: Virtual Private Network (VPN)
 - Make node appear in the same network as say a company, while actually outside the network
 - IPSEC is a secure VPN technology

Apr-1-04

Apr-1-04 4/598N: Computer Networks

IPSEC

- · Authentication Know the sender
- Encryption Cannot eves drop
- Operates in host-to-host or host-to-network or network-to-network modes
- · With Two Major modes
 - Tunnel

Å٢

Apr-1-04

- Transport
 - AH (Authentication Header)
 - ESP (Encapsulating Security Protocol)
 - AH + ESP

Apr-1-04 4/598N: Computer Networks

4/598N: Computer Networks

	Message Integrity Protocols
•	Digital signature using RSA
	 special case of a message integrity where the code can only have been generated by one participant
	 compute signature with private key and verify with public key
•	Keyed MD5
	 sender: m + MD5(m + k) + E(k, private)
	- receiver
	 recovers random key using the sender's public key
	 applies MD5 to the concatenation of this random key message
•	MD5 with RSA signature
	 sender: m + E(MD5(m), private)
	- receiver
	 decrypts signature with sender's public key
	 compares result with MD5 checksum sent with message
Á	Apr-1-04 4/598N: Computer Networks
0110	

Apr-1-04 4/598N: Computer Networks ן ר

Key Distribution (cont)
 Chain of Trust if X certifies that a certain public key belongs to Y, and Y certifies that another public key belongs to Z, then there exists a chain of certificates from X to Z someone that wants to verify Z's public key has to know X's public key and follow the chain Certificate Revocation List

Y

Apr-1-04 4/598N: Computer Networks

Denial of Service
 Attacks on end hosts SYN attack Attacks on routers Christmas tree packets pollute route cache Authentication attacks Distributed DoS attacks
Apr-1-04 4/598N: Computer Networks