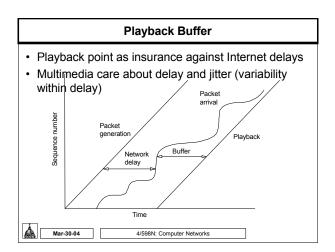
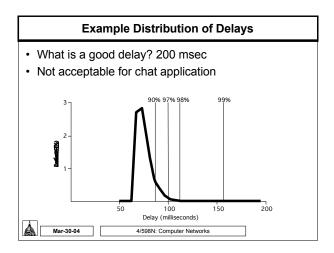
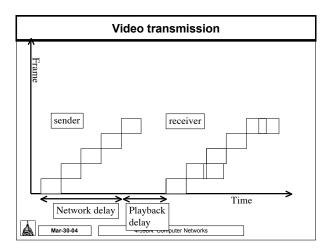
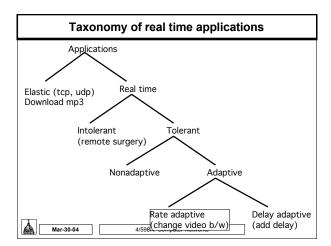

Recap

- UDP: IP with port abstraction
- TCP: Reliable, in order, at most once semantics – Sliding Windows
 - Flow control: ensure client is not overwhelmed
 Advertised window from receiver end
 - Congestion control: ensure network is not overwhelmed
 - Congestion window from sender end
 - TCP friendly flows
 - TCP has no timing requirements









	QoS Approaches	
 Intserv 	d - individual application or flows	
– Diffserv	ned - aggregated traffic fic from CSE (costs \$\$)	
Mar-30-04	4/598N: Computer Networks	

Integrated Services
 IETF - 1995-97 time frame Service Classes guaranteed controlled-load (tolerant, adaptive applications) Simulates lightly loaded link Mechanisms signaling protocol: signals required service
 admission control: rejects traffic that cannot be serviced Policing: make sure that senders stick to agreement packet scheduling: manage how packets are queued
Mar-30-04 4/598N: Computer Networks

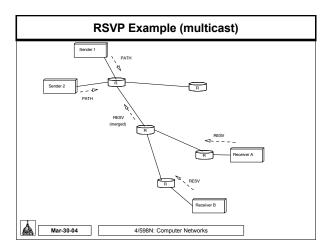
Flowspec

- Rspec: describes service requested from network
 - controlled-load: none
 - guaranteed: delay target
- Tspec: describes flow's traffic characteristics

 average bandwidth + burstiness: token bucket filter
 - token rate r and bucket depth B
 - must have a token to send a byte
 - must have n tokens to send n bytes
 - start with no tokens
 - accumulate tokens at rate of r per second
 - can accumulate no more than B tokens

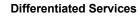
Mar-30-04 4/598N: Computer Networks

Per-Router Mechanisms

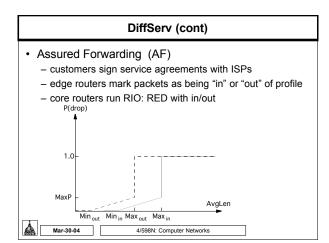

Admission Control

- decide if a new flow can be supported
- answer depends on service class
- not the same as policing
- Packet Processing
 - classification: associate each packet with the appropriate reservation
 - scheduling: manage queues so each packet receives the requested service

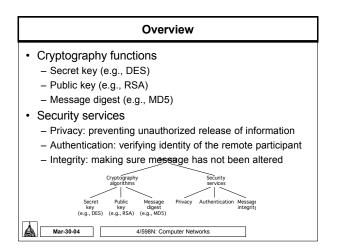
Reservation Protocol

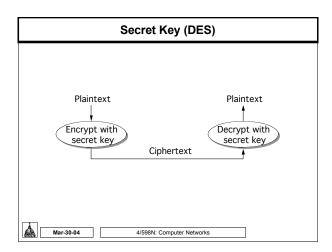

- Called signaling in ATM
- Proposed Internet standard: RSVP
- Consistent with robustness of today's connectionless model
- Uses soft state (refresh periodically)
- Designed to support multicast
- · Receiver-oriented
- Two messages: PATH and RESV
- Source transmits PATH messages every 30 seconds
- Destination responds with RESV message
- · Merge requirements in case of multicast
- Can specify number of speakers

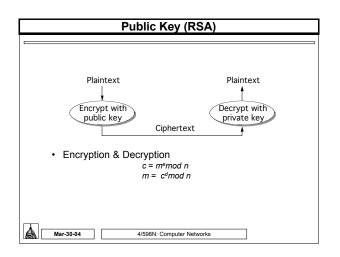
Mar-30-04 4/598N: Computer Networks

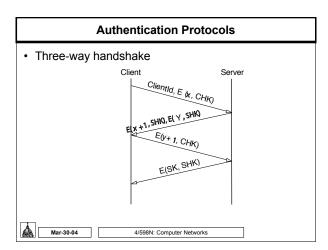


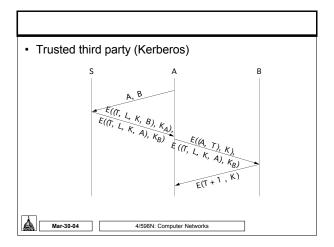
RSVP versus ATM (Q.2931)
 RSVP receiver generates reservation soft state (refresh/timeout) separate from route establishment QoS can change dynamically receiver heterogeneity ATM sender generates connection request hard state (explicit delete) concurrent with route establishment QoS is static for life of connection uniform QoS to all receivers
Mar-30-04 4/598N: Computer Networks

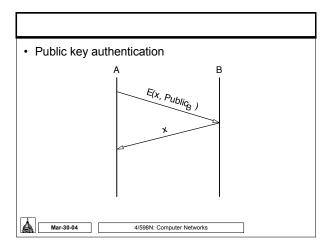

5

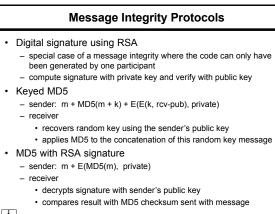

- Problem with IntServ: scalability
- Idea: segregate packets into a small number of classes
 - e.g., premium vs best-effort
- Packets marked according to class at edge of network
- Core routers implement some per-hop-behavior (PHB)
- Example: Expedited Forwarding (EF)
- rate-limit EF packets at the edges
 - PHB implemented with class-based priority queues or Weighted Fair Queue (WFQ)

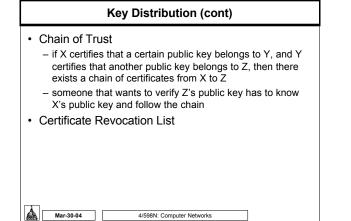

Chapter 8: Security
 Outline Encryption Algorithms Authentication Protocols Message Integrity Protocols Key Distribution Firewalls
Mar-30-04 4/598N: Computer Networks



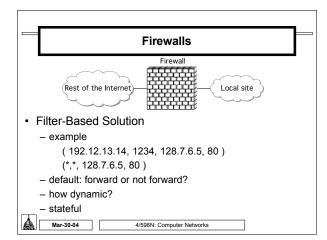


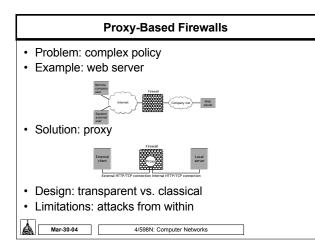

Message Digest
 Cryptographic checksum just as a regular checksum protects the receiver from accidental changes to the message, a cryptographic checksum protects the receiver from malicious changes to the message.
 One-way function given a cryptographic checksum for a message, it is virtually impossible to figure out what message produced that checksum; it is not computationally feasible to find two messages that hash to the same cryptographic checksum.
 Relevance if you are given a checksum for a message and you are able to compute exactly the same checksum for that message, then it is highly likely this message produced the checksum you were given.
A/598N: Computer Networks

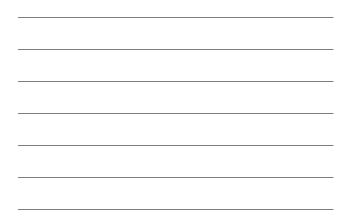



Message Integrity Protocols

- · Digital signature using RSA
 - special case of a message integrity where the code can only have been generated by one participant
 - compute signature with private key and verify with public key
- Keyed MD5
 - sender: m + MD5(m + k) + E(k, private)
 - receiver
 - recovers random key using the sender's public key
 - applies MD5 to the concatenation of this random key message
- MD5 with RSA signature
 - sender: m + E(MD5(m), private)
 - receiver
 - · decrypts signature with sender's public key
 - · compares result with MD5 checksum sent with message


Mar-30-04 4/598N: Computer Networks


Key Distribution	
Certificate	
 special type of digitally signed document: 	
 "I certify that the public key in this docume the entity named in this document, signed 	
- the name of the entity being certified	
 the public key of the entity 	
 the name of the certified authority 	
 a digital signature 	
Certified Authority (CA)	
 administrative entity that issues certificates 	
 useful only to someone that already holds th key. 	e CA's public
Mar-30-04 4/598N: Computer Networks	



4/598N: Computer Networks

	Denial of Service	
 Attacks on end 	l hosts	
 SYN attack 		
 Attacks on rou 	ters	
 Christmas tree 	e packets	
 pollute route of 	cache	
 Authentication 	attacks	
 Distributed Do 	S attacks	
Mar-30-04	4/598N: Computer Networks	