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Tear-down Packet Exchange

Sender Receiver
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FIN-ACK

FIN

FIN-ACK

Data write

Data ack
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State Transition Diagram

CLOSED

LISTEN

SYN_RCVD SYN_SENT

ESTABLISHED

CLOSE_WAIT

LAST_ACKCLOSING

TIME_WAIT

FIN_WAIT_2

FIN_WAIT_1

Passive open Close

Send/SYN
SYN/SYN + ACK

SYN + ACK/ACK

SYN/SYN + ACK

ACK

Close/FIN

FIN/ACKClose/FIN

FIN/ACKACK + FIN/ACK
Timeout after two 
segment lifetimes

FIN/ACK
ACK

ACK

ACK

Close/FIN

Close

CLOSED

Active open/SYN

Mar-23-04 4/598N: Computer Networks

Sliding Window Revisited

• Sending side
– LastByteAcked < =
LastByteSent

– LastByteSent < =
LastByteWritten

– buffer bytes between
LastByteAcked and
LastByteWritten

Sending application

LastByteWritten

TCP

LastByteSentLastByteAcked

Receiving application

LastByteRead

TCP

LastByteRcvdNextByteExpected

• Receiving side
– LastByteRead <
NextByteExpected

– NextByteExpected < =
LastByteRcvd +1

– buffer bytes between
NextByteRead and
LastByteRcvd
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Flow Control

• Fast sender can overrun receiver:
– Packet loss, unnecessary retransmissions

• Possible solutions:
– Sender transmits at pre-negotiated rate

– Sender limited to a window’s worth of unacknowledged data

• Flow control different from congestion control
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Flow Control

• Send buffer size: MaxSendBuffer
• Receive buffer size: MaxRcvBuffer
• Receiving side

– LastByteRcvd - LastByteRead < = MaxRcvBuffer
– AdvertisedWindow = MaxRcvBuffer - (NextByteExpected -

NextByteRead)

• Sending side
– LastByteSent - LastByteAcked < = AdvertisedWindow
– EffectiveWindow = AdvertisedWindow - (LastByteSent -

LastByteAcked)
– LastByteWritten - LastByteAcked < = MaxSendBuffer
– block sender if (LastByteWritten - LastByteAcked) + y >

MaxSenderBuffer

• Always send ACK in response to arriving data segment
• Persist when AdvertisedWindow = 0
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Round-trip Time Estimation

• Wait at least one RTT before retransmitting

• Importance of accurate RTT estimators:
– Low  RTT -> unneeded retransmissions

– High RTT -> poor throughput

• RTT estimator must adapt to change in RTT
– But not too fast, or too slow!
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Initial Round-trip Estimator

Round trip times exponentially averaged:
• New RTT = α (old RTT) + (1 - α) (new sample)

• Recommended value for α: 0.8 - 0.9

• Retransmit timer set to β RTT, where β = 2

• Every time timer expires, RTO exponentially backed-off
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Retransmission Ambiguity
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Karn’s Retransmission Timeout Estimator

• Accounts for retransmission ambiguity

• If a segment has been retransmitted:
– Don’t count RTT sample on ACKs for this segment

– Keep backed off time-out for next packet

– Reuse RTT estimate only after one successful
transmission
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Karn/Partridge Algorithm

• Do not sample RTT when retransmitting

• Double timeout after each retransmission
Sender Receiver
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Jacobson’s Retransmission Timeout Estimator

• Key observation:
– Using β RTT for timeout doesn’t work

– At high loads round trip variance is high

• Solution:
– If D denotes mean variation

– Timeout = RTT + 4D
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Congestion

• If both sources send full windows, we may get
congestion collapse

• Other forms of congestion collapse:
– Retransmissions of large packets after loss of a

single fragment

– Non-feedback controlled sources

10 Mbps

100 Mbps

1.5 Mbps



5

Mar-23-04 4/598N: Computer Networks

Congestion Response

load

throughput

load

delay

Avoidance keeps the system performing at the knee
Control kicks in once the system has reached a congested state
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Separation of Functionality

• Sending host must adjust amount of data it puts in
the network based on detected congestion

• Routers can help by:
– Sending accurate congestion signals

– Isolating well-behaved from ill-behaved sources
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6.3 TCP Congestion Control

• Idea
– assumes best-effort network (FIFO or FQ routers)each

source determines network capacity for itself

– uses implicit feedback

– ACKs pace transmission (self-clocking)

• Challenge
– determining the available capacity in the first place

– adjusting to changes in the available capacity
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TCP Congestion Control

• A collection of interrelated mechanisms:
– Slow start

– Congestion avoidance

– Accurate retransmission timeout estimation

– Fast retransmit

– Fast recovery
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Congestion Control

• Underlying design principle: packet conservation
– At equilibrium, inject packet into network only when one is

removed

– Basis for stability of physical systems

• A mechanism which:
– Uses network resources efficiently

– Preserves fair network resource allocation

– Prevents or avoids collapse

• Congestion collapse is not just a theory
– Has been frequently observed in many networks
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Congestion Under Infinite Buffering

• Nagle (RFC 970) showed that congestion will not go
away even with infinite buffers

• Basic argument
– A datagram network must have TTL

– With infinite buffering queuing delays increase

– Even if buffers are not dropped for lack of buffering, they
will be dropped because TTL expires
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Additive Increase/Multiplicative Decrease

• Objective: adjust to changes in the available capacity
• New state variable per connection: CongestionWindow

– limits how much data source has in transit

MaxWin = MIN(CongestionWindow, 
 AdvertisedWindow)

EffWin = MaxWin - (LastByteSent - 
 LastByteAcked)

• Idea:
– increase CongestionWindow when congestion goes

down
– decrease CongestionWindow when congestion goes up
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AIMD (cont)

• Question: how does the source determine whether
or not the network is congested?

• Answer: a timeout occurs
– timeout signals that a packet was lost

– packets are seldom lost due to transmission error

– lost packet implies congestion
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AIMD (cont)

• In practice: increment a little for each ACK
Increment = (MSS * MSS)/CongestionWindow
CongestionWindow += Increment

Source Destination

…

• Algorithm
– increment CongestionWindow by one

packet per RTT (linear increase)
– divide CongestionWindow by two

whenever a timeout occurs
(multiplicative decrease)
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AIMD (cont)

• Trace: sawtooth behavior
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Self-clocking

• If we have large actual window, should we send
data in one shot?
– No, use acks to clock sending new data
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..Self-clocking
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Slow Start

• Objective: determine the available
capacity in the first

• Idea:
– begin with CongestionWindow = 1

packet

– double CongestionWindow each RTT
(increment by 1 packet for each ACK)

Source Destination

…
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Slow Start Example

1

one RTT

one pkt time

0R

2
1R

3

4
2R

5
6
7

8
3R

9
10
11

12
13

14
15

1

2 3

4 5 6 7

Mar-23-04 4/598N: Computer Networks

Slow Start (cont)

• Exponential growth, but slower than all at once
• Used…

– when first starting connection
– when connection goes dead waiting for timeout

• Trace

• Problem: lose up to half a CongestionWindow’s
worth of data
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Congestion Avoidance

• Coarse grained timeout as loss indicator

• If loss occurs when cwnd = W
– Network can absorb 0.5W ~ W segments

– Set cwnd to 0.5W (multiplicative decrease)

– Needed to avoid exponential queue buildup

• Upon receiving ACK
– Increase  cwnd by 1/cwnd (additive increase)

– Multiplicative increase -> non-convergence
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Slow Start and Congestion Avoidance

• If packet is lost we lose our self clocking as well
– Need to implement slow-start and congestion avoidance

together

• When timeout occurs set ssthresh to 0.5w
– If cwnd < ssthresh, use slow start

– Else use congestion avoidance
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Impact of Timeouts

• Timeouts can cause sender to
– Slow start

– Retransmit a possibly large portion of the window

• Bad for lossy high bandwidth-delay paths

• Can leverage duplicate acks to:
– Retransmit fewer segments (fast retransmit)

– Advance cwnd more aggressively (fast recovery)
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Fast Retransmit and Fast Recovery

• Problem: coarse-grain
TCP timeouts lead to idle
periods

• Fast retransmit: use
duplicate ACKs to trigger
retransmission

Packet 1

Packet 2
Packet 3
Packet 4

Packet 5

Packet 6

Retransmit
packet 3

ACK 1

ACK 2

ACK 2

ACK 2

ACK 6

ACK 2

Sender Receiver
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Fast Retransmit and Recovery

• If we get 3 duplicate acks for segment N
– Retransmit segment N

– Set ssthresh to 0.5*cwnd

– Set cwnd to ssthresh + 3

• For every subsequent duplicate ack
– Increase cwnd by 1 segment

• When new ack received
– Reset cwnd to ssthresh (resume congestion avoidance)
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Fast Recovery

• In congestion avoidance mode, if duplicate acks are
received, reduce cwnd to half

• If n successive duplicate acks are received, we
know that receiver got n segments after lost
segment:
– Advance cwnd by that number
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Results

• Fast recovery
– skip the slow start phase

– go directly to half the last successful CongestionWindow
(ssthresh)
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TCP Extensions

• Implemented using TCP options
– Timestamp

– Protection from sequence number wraparound

– Large windows
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Timestamp Extension

• Used to improve timeout mechanism by more
accurate measurement of RTT

• When sending a packet, insert current timestamp
into option

• Receiver echoes timestamp in ACK
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Protection Against Wrap Around

• 32-bit SequenceNum

Bandwidth Time Until Wrap Around
T1 (1.5 Mbps) 6.4 hours
Ethernet (10 Mbps) 57 minutes
T3 (45 Mbps) 13 minutes
FDDI (100 Mbps) 6 minutes
STS-3 (155 Mbps) 4 minutes
STS-12 (622 Mbps) 55 seconds
STS-24 (1.2 Gbps) 28 seconds

• Use timestamp to distinguish sequence number
wraparound
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Keeping the Pipe Full

• 16-bit AdvertisedWindow

Bandwidth Delay x Bandwidth Product
T1 (1.5 Mbps) 18KB
Ethernet (10 Mbps) 122KB
T3 (45 Mbps) 549KB
FDDI (100 Mbps) 1.2MB
STS-3 (155 Mbps) 1.8MB
STS-12 (622 Mbps) 7.4MB
STS-24 (1.2 Gbps) 14.8MB
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Large Windows

• Apply scaling factor to advertised window
– Specifies how many bits window must be shifted to the left

• Scaling factor exchanged during connection setup
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TCP Flavors

• Tahoe, Reno, Vegas

• TCP Tahoe (distributed with 4.3BSD Unix)
– Original implementation of van Jacobson’s mechanisms

(VJ paper)

– Includes:

• Slow start (exponential increase of initial window)

• Congestion avoidance (additive increase of window)

• Fast retransmit (3 duplicate acks)
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TCP Reno

• 1990: includes:
– All mechanisms in Tahoe

– Addition of fast-recovery (opening up window after fast
retransmit)

– Delayed acks (to avoid silly window syndrome)

– Header prediction (to improve performance)
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SACK TCP

(RFC 2018)
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What’s Wrong with Current TCP?

• TCP uses a cumulative acknowledgment scheme, in
which the receiver identifies the last byte of data
successfully received.

• Received segments that are not at the left window
edge are not acknowledged.

• This scheme forces the sender to either wait a
roundtrip time to find out a segment was lost, or
unnecessarily retransmit segments which have been
correctly received.

• Results in significantly reduced overall throughput.
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Selective Acknowledgment TCP

• Selective Acknowledgment (SACK) allows the
receiver to inform the sender about all segments
that have been successfully received.

• Allows the sender to retransmit only those segments
that have been lost.

• SACK is implemented using two different TCP
options.
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The SACK-Permitted Option

• The first TCP option is the enabling option, “SACK-
permitted,” allowed only in a SYN segment.

• This indicates that the sender can handle SACK
data and the receiver should send it, if possible.
(Both sides can enable SACK, but each direction of
the TCP connection is treated independently.)

Kind = 4 Length = 2

HL = 6

standard

TCP header

options field

TCP header length

Kind = 1 Kind = 1

SACK-permitted NOP NOP

SYN bit

1
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The SACK Option

• If the SACK-permitted option is
received, the receiver may send
the SACK option.

Kind = 1 Kind = 1

HL = Y

Kind = 5 Length = X

Right Edge of 1st Block
Left Edge of 1st Block

Right Edge of nth Block
Left Edge of nth Block

standard

TCP header

options field

What is a simple formula 

for the SACK option

 length field (based on n, 

the number of blocks 

in the option)?

(2 + 8 * n) bytes

What is the maximum

number of SACK 

blocks possible?  Why?

The maximum size of the 

options field

is 40 bytes, giving a 

maximum of 4 SACK 

blocks (barring no 

other TCP options).
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The SACK Option

• Each block in a SACK represents bytes successfully
received that are contiguous and isolated (the bytes
immediately to the left and the right have not yet
been received).

s en der

rec eiv er

5500-5999
6000-6499

5000-5499

ACK 5500

6500-6999

ACK 5500; SACK=6000-6500

ACK 5500; SACK=6000-7000
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SACK TCP Rules

• A SACK cannot be sent unless the SACK-permitted
option has been received (in the SYN).

• If a receiver has chosen to send SACKs, it must
send them whenever it has data to SACK at the time
of an ACK.

• The receiver should send an ACK for every valid
segment it receives containing new data (standard
TCP behavior), and each of these ACKs should
contain a SACK, assuming there is data to SACK.



17

Mar-23-04 4/598N: Computer Networks

SACK TCP Rules

• The first SACK block must contain the most recently
received segment that is to be SACKed.

• The second block must contain the second most
recently received segment that is to be SACKed,
and so forth.

• Notice this can result in some data in the receiver’s
buffers which should be SACKed but is not (if there
are more segments to SACK than available space in
the TCP header).
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se nd er

rece ive r

5000-5499

6500-6999

6000-6499

8000-8499

7000-7499

ACK 5500

ACK 5500; SACK=6000-6500

ACK 5500; SACK=7000-7500, 6000-6500
7500-7999

8500-8999

5500-5999

ACK 5500; SACK=8000-8500, 7000-7500, 6000-6500

ACK 5500; SACK=9000-9500, 8000-8500, 7000-7500

9000-9499

SACK TCP Example
       (assuming a maximum of 3 blocks)
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SACK TCP Example (continued)

• At this point, the 4th segment (6500-6999) is
received.  After the receiver acknowledges this
reception, the 2nd segment (5500-5999) is received.

se nd er

r ecei ver

6500-6999

ACK 5500; SACK=6000-7500,9000-9500,8000-8500

5500-5999

ACK 7500; SACK=9000-9500,8000-8500

ACK 5500; SACK=9000-9500, 8000-8500, 7000-7500
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What Should the Sender do?

• The sender must keep a buffer of unacknowledged
data.  When it receives a SACK option, it should turn
on a SACK-flag bit for all segments in the transmit
buffer that are wholly contained within one of the
SACK blocks.

• After this SACK flag bit has been turned on, the
sender should skip that segment during any later
retransmission.
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SACK TCP at the Sender Example

sender

re cei ver

6000-6499

ACK 5500; SACK=6000-6500

5500-5999

6500-6999
7000-7499

ACK 5500; SACK=6000-7000

5000-5499

5500-5999
7000-7499

ACK 5500; SACK=6000-7500SENDER
TIMEOUT
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Receiver Has A
Two-Segment Buffer (A Problem?)

se nde r

re cei ve r

Receiver’s Buffer
5000-5499

5500-5999

6000-6499

6500-6999

5000-5499

6000-6499

6000-6499

6500-6999

5500-5999

ACK 5500; SACK=6000-6500

ACK 5500; SACK=6000-7000

5500-5999 6500-6999

What is the ACK / SACK segment

sent from the receiver at this point?

ACK 6000; SACK=6500-7000
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Reneging in SACK TCP

• It is possible for the receiver to SACK some data
and then later discard it.  This is referred to as
reneging. This is discouraged, but permitted if the
receiver runs out of buffer space.

• If this occurs,
– The first SACK block must still reflect the newest segment,

i.e. contain the left and right edges of the newest segment,
even if that segment is going to be discarded.

– Except for the newest segment, all SACK blocks must not
report any old data that has been discarded.
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Reneging in SACK TCP

• Therefore, the sender must maintain normal TCP
timeouts.  A segment cannot be considered received
until an ACK is received for it.  The sender must
retransmit the segment at the left window edge after
a retransmit timeout, even if the SACK bit is on for
that segment.

• A segment cannot be removed from the transmit
buffer until the left window edge is advanced over it,
via the receiving of an ACK.
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SACK TCP Observations

• SACK TCP follows standard TCP congestion control;
it should not damage the network.

• SACK TCP has an advantage over other
implementations (Reno, Tahoe, Vegas, and
NewReno) as it has added information due to the
SACK data.

• This information allows the sender to better decide
what it needs to retransmit and what it does not.
This can only serve to help the sender, and should
not adversely affect other TCPs.
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SACK TCP Observations

• While it is still possible for a SACK TCP to
needlessly retransmit segments, the number of
these retransmissions has been shown to be quite
low in simulations, relative to Reno and Tahoe TCP.

• In any case, the number of needless
retransmissions must be strictly less than
Reno/Tahoe TCP.  As the sender has additional
information from which to devise its retransmission
scheme, worse performance is not possible (barring
a flawed implementation).
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SACK TCP
Implementation Progress

• Current SACK TCP implementations:
– Windows 2000

– Windows 98 / Windows ME

– Solaris 7 and later

– Linux kernel 2.1.90 and later

– FreeBSD and NetBSD have optional modules

• ACIRI has measured the behavior of 2278 random
web servers that claim to be SACK-enabled.  Out of
these, 2133 (93.6%) appeared to ignore SACK data
and only 145 (6.4%) appeared to actually use the
SACK data.
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D-SACK TCP

(RFC 2883)
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One Step Further: D-SACK TCP

• Duplicate-SACK, or D-SACK is an extension to SACK TCP
which uses the first block of a SACK option is used to report
duplicate segments that have been received.

• A D-SACK block is only used to report a duplicate contiguous
sequence of data received by the receiver in the most recent
segment.

• Each duplicate is reported at most once.
• This allows the sender TCP to determine when a

retransmission was not necessary.  It may not have been
necessary due to the retransmit timer expiring prematurely or
due to a false Fast Retransmit (3 duplicate ACKs received
due to network reordering).
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D-SACK Example
(packet replicated by the network)

rece iver

send er

3500-3999

4000-4499

ACK 4000

4500-4999

ACK 4000; SACK=4500-5000

5000-5499

ACK 4000; SACK=4500-5500

ACK 4000; SACK=5000-5500, 4500-5500
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D-SACK Example (losses, and the sender changes
the segment size)

se nd er

re c ei ver

500-999

1500-1999

2500-2999

3000-3499

1000-1499

2000-2499 ACK 1000

ACK 1000; SACK=3000-3500

ACK 1500; SACK=3000-3500

ACK 1500; SACK=2000-2500,3000-3500

1000-2499

ACK 2500; SACK=1000-1500, 3000-3500
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D-SACK TCP Rules

• If the D-SACK block reports a duplicate sequence
from a (possibly larger) block of data in the receiver
buffer above the cumulative acknowledgement, the
second SACK block (the first non D-SACK block)
should specify this block.

• As only the first SACK block is considered to be a D-
SACK block, if multiple sequences are duplicated,
only the first is contained in the D-SACK block.
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D-SACK TCP and Retransmissions

• D-SACK allows TCP to determine when a retransmission was not
necessary (it receives a D-SACK after it retransmitted a segment).
When this determination is made, the sender can “undo” the
halving of the congestion window, as it will do when a segment is
retransmitted (as it assumes net congestion).

• D-SACK also allows TCP to determine if the network is duplicating
packets (it will receive a D-SACK for a segment it only sent once).

• D-SACK’s weakness is that is does not allow a sender to
determine if both the original and retransmitted segment are
received, or the original is lost and the retransmitted segment is
duplicated by the network.
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SACK and D-SACK Interaction

• There is no difference between SACK and D-SACK,
except that the first SACK block is used to report a
duplicate segment in D-SACK.

• There is no separate negotiation/options for D-
SACK.

• There are no inherit problems with having the
receiver use D-SACK and having the sender use
traditional SACK.  As the duplicate that is being
reported is still being SACKed (for the second or
greater time), there is no problem with a SACK TCP
using this extension with a D-SACK TCP (although
the D-SACK specific data is not used).
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Increasing the Maximum
TCP Initial Window Size

(RFC 2414)
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Increasing the Initial Window

• RFC 2414 specifies an experimental change to TCP, the
increasing of the maximum initial window size, from one
segment to a larger value.

• This new larger value is given as:

• This translates to:

min ( 4*MSS, max ( 2*MSS, 4380 bytes) )

<= 2 * MSS>= 2190 bytes

<= 4380 bytes1095 bytes < MSS < 2190 bytes

<= 4 * MSS<= 1095 bytes

Maximum Initial Window SizeMaximum Segment Size (MSS)
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Increasing the Initial Window
send er

receiver

sende r

rece iver

Slow-Start TCP RFC 2414 TCP

…
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Advantages of an
Increased Initial Window Size

• This change is in contrast to the slow start
mechanism, which initializes the initial window size
to one segment.  This mechanism is in place to
implement sender-based congestion control (see
RFC 2001 for a complete discussion).

• This new larger window offers three distinct
advantages:
– With slow start, a receiver which uses delayed ACKs is

forced to wait for a timeout before generating an ACK.
With an initial window of at least two segments, the
receiver will generate an ACK after the second segment
arrives, causing a speedup in data acknowledgement.
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Advantages of an
Increased Initial Window Size

– For TCP connections transferring a small amount of data
(such as SMTP and HTTP requests), the larger initial
window will reduce the transmission time, as more data
can be outstanding at once.

– For TCP connections transferring a large amount of data
with high propagation delays (long haul pipes; such as
backbone connects and satellite links), this change
eliminates up to three round-trip times (RTTs) and a
delayed ACK timeout during the initial slow start.
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Disadvantages of an
Increased Initial Window Size

• This approach also has disadvantages:
– This approach could cause increased congestion, as

multiple segments are transmitted at once, at the
beginning of the connection.  As modern routers tend to
not handle bursty traffic well (Drop Tail queue
management), this could increase the drop rate.

• ACIRI research on this topic concludes that there is
no more danger from increasing the initial TCP
window size to a maximum of 4KB than the
presence of UDP communications (that do not have
end-to-end congestion control).
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Increased Initial Window Size
Implementation Progress

• Looking at ACIRI observations, current web servers
use a wide range of initial TCP window sizes,
ranging from one segment (slow start) to seventeen
segments.

• This is a clear violation of RFC 2414, not to mention
RFC 2001 (the currently approved IETF/ISOC
standard).

• Such large initial window sizes seem to indicate a
greedy TCP, not conforming to the required sender-
side congestion control window (even if the
experimental higher initial window is considered).
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Summary

• SACK TCP provides additional information to the
sender, allowing the reduction of needless
retransmissions.  There is no danger in providing
this information, it simply serves to make a “smarter”
TCP sender.

• D-SACK TCP allows the sender to determine when
it has needlessly resent segments.  This will allow
the sender to continuously refine its retransmission
strategy and undo unnecessary and incorrect
congestion control mechanisms.

• Increasing the initial TCP window is a slight change
that has advantages for both small and large data
transfers, without significantly affecting the
congestion control a smaller window provides.
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Remote Procedure Call

• Outline
– Protocol Stack

– Presentation Formatting
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RPC Timeline

Client Server

Request

Reply

Computing

Blocked

Blocked

Blocked
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RCP Components

• Protocol Stack
– BLAST: fragments and reassembles large messages

– CHAN: synchronizes request and reply messages

– SELECT: dispatches request to the correct process

• Stubs Caller
(client)

Client
stub

RPC
protocol

Return
valueArguments

ReplyRequest

Callee
(server)

Server
stub

RPC
protocol

Return
valueArguments

ReplyRequest

Mar-23-04 4/598N: Computer Networks

Bulk Transfer (BLAST)

• Unlike AAL and IP, tries to recover from lost
fragments

• Strategy
– selective retransmission

– aka partial acknowledgements

Sender Receiver

Fragment 1
Fragment 2Fragment 3

Fragment 5

Fragment 4

Fragment 6

Fragment 3
Fragment 5

SRR

SRR
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BLAST Details

• Sender:
– after sending all fragments, set timer DONE

– if receive SRR, send missing fragments and reset DONE

– if timer DONE expires, free fragments
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BLAST Details (cont)

• Receiver:
– when first fragments arrives, set timer LAST_FRAG

– when all fragments present, reassemble and pass up

– four exceptional conditions:

• if last fragment arrives but message not complete
– send SRR and set timer RETRY

• if timer LAST_FRAG expires
– send SRR and set timer RETRY

• if timer RETRY expires for first or second time
– send SRR and set timer RETRY

• if timer RETRY expires a third time
– give up and free partial message
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BLAST Header Format

• MID must protect against wrap around

• TYPE = DATA or SRR

• NumFrags indicates number of fragments

• FragMask distinguishes among fragments
– if Type=DATA, identifies this fragment

– if Type=SRR, identifies missing fragments

Data

ProtNum

MID

Length

NumFrags Type

FragMask

0 16 31
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Request/Reply (CHAN)

• Guarantees message delivery

• Synchronizes client with server

• Supports at-most-once semantics

• Simple case                        Implicit Acks
Client Server

Request

ACK

Reply

ACK

Client Server
Request 1

Request 2

Reply 2

Reply 1

…
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CHAN Details

• Lost message (request, reply, or ACK)
– set RETRANSMIT timer

– use message id (MID) field to distinguish

• Slow (long running) server
– client periodically sends “are you alive” probe, or

– server periodically sends “I’m alive” notice

• Want to support multiple outstanding calls
– use channel id (CID) field to distinguish

• Machines crash and reboot
– use boot id (BID) field to distinguish
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CHAN Header Format

typedef struct {
   u_short  Type;    /* REQ, REP, ACK, PROBE */
   u_short  CID;     /* unique channel id */
   int      MID;     /* unique message id */
   int      BID;     /* unique boot id */
   int      Length;  /* length of message */
   int      ProtNum; /* high-level protocol */
} ChanHdr;

typedef struct {
   u_char    type;         /* CLIENT or SERVER */
   u_char    status;       /* BUSY or IDLE */
   int       retries;      /* number of retries */
   int       timeout;      /* timeout value */
   XkReturn  ret_val;      /* return value */
   Msg       *request;     /* request message */
   Msg       *reply;       /* reply message */
   Semaphore reply_sem;    /* client semaphore */
   int       mid;          /* message id */
   int       bid;          /* boot id */
} ChanState;
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Synchronous vs Asynchronous Protocols

• Asynchronous interface
xPush(Sessn s, Msg *msg)
xPop(Sessn s, Msg *msg, void *hdr)
xDemux(Protl hlp, Sessn s, Msg *msg)

• Synchronous interface
xCall(Sessn s, Msg *req, Msg *rep)
xCallPop(Sessn s, Msg *req, Msg *rep, void *hdr)
xCallDemux(Protl hlp, Sessn s, Msg *req, Msg *rep)

• CHAN is a hybrid protocol
– synchronous from above: xCall
– asynchronous from below: xPop/xDemux
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chanCall(Sessn self, Msg *msg, Msg *rmsg){
   ChanState   *state = (ChanState *)self->state;
   ChanHdr     *hdr;
   char        *buf;

   /* ensure only one transaction per channel */
   if ((state->status != IDLE))
      return XK_FAILURE;
   state->status = BUSY;

   /* save copy of req msg and ptr to rep msg*/
   msgConstructCopy(&state->request, msg);
   state->reply = rmsg;
   /* fill out header fields */
   hdr = state->hdr_template;
   hdr->Length = msgLen(msg);
   if (state->mid == MAX_MID)
      state->mid = 0;
      hdr->MID = ++state->mid;
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   /* attach header to msg and send it */
   buf = msgPush(msg, HDR_LEN);
   chan_hdr_store(hdr, buf, HDR_LEN);
   xPush(xGetDown(self, 0), msg);

   /* schedule first timeout event */
   state->retries = 1;
   state->event = evSchedule(retransmit, self, state->timeout);

   /* wait for the reply msg */
   semWait(&state->reply_sem);

   /* clean up state and return */
   flush_msg(state->request);
   state->status = IDLE;
   return state->ret_val;
}
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retransmit(Event ev, int *arg){
   Sessn        s = (Sessn)arg;
   ChanState    *state = (ChanState *)s->state;
   Msg          tmp;

   /* see if event was cancelled */
   if ( evIsCancelled(ev) ) return;

   /* unblock client if we've retried 4 times */
   if (++state->retries > 4) {
      state->ret_val = XK_FAILURE;
      semSignal(state->rep_sem);
      return;
   }

   /* retransmit request message */
   msgConstructCopy(&tmp, &state->request);
   xPush(xGetDown(s, 0), &tmp);

   /* reschedule event with exponential backoff */
   evDetach(state->event);
   state->timeout = 2*state->timeout;
   state->event = evSchedule(retransmit, s,

state->timeout);
}
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Dispatcher (SELECT)

• Dispatch to appropriate procedure

• Synchronous counterpart to UDP Caller

SELECT

CHAN

xCall

xCall

xDemuxxPush

Callee

SELECT

CHAN

xCallDemux

xCallDemux

xDemuxxPush

ServerClient

• Address Space for Procedures
– flat: unique id for each possible procedure
– hierarchical: program + procedure number
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Example Code

Client side
static XkReturn
selectCall(Sessn self, Msg *req, Msg *rep)
{
   SelectState *state=(SelectState *)self->state;
   char        *buf;

   buf = msgPush(req, HLEN);
   select_hdr_store(state->hdr, buf, HLEN);
   return xCall(xGetDown(self, 0), req, rep);
}

Server side
static XkReturn
selectCallPop(Sessn s, Sessn lls, Msg *req, Msg *rep, void *inHdr)
{
   return xCallDemux(xGetUp(s), s, req, rep);
}
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Simple RPC Stack

BLAST

ETH

IP

SELECT

CHAN
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VCHAN: A Virtual Protocol

static XkReturn
vchanCall(Sessn s, Msg *req, Msg *rep)
{
   Sessn      chan;
   XkReturn   result;
   VchanState *state=(VchanState *)s->state;

   /* wait for an idle channel */
   semWait(&state->available);
   chan = state->stack[--state->tos];

   /* use the channel */
   result = xCall(chan, req, rep);

   /* free the channel */
   state->stack[state->tos++] = chan;
   semSignal(&state->available);
   return result;
}
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SunRPC

• IP implements BLAST-equivalent
– except no selective retransmit

• SunRPC implements CHAN-equivalent
– except not at-most-once

• UDP + SunRPC implement SELECT-equivalent
– UDP dispatches to program (ports bound to programs)

– SunRPC dispatches to procedure within program

IP

ETH

SunRPC

UDP
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SunRPC Header Format

• XID (transaction id) is similar to CHAN’s MID

• Server does not remember last XID it serviced

• Problem if client retransmits request while reply is in
transit

Data

MsgType = CALL

XID

RPCVersion = 2

Program

Version

Procedure

Credentials (variable)

Verifier (variable)

0 31

Data

MsgType = REPLY

XID

Status = ACCEPTED

0 31


