

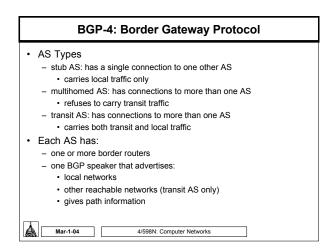
Forwarding Algorithm
<pre>D = destination IP address for each entry (SubnetNum, SubnetMask, NextHop) D1 = SubnetMask & D if D1 = SubnetNum if NextHop is an interface deliver datagram directly to D else deliver datagram to NextHop</pre>
 Use a default router if nothing matches Not necessary for all 1s in subnet mask to be contiguous Can put multiple subnets on one physical network Subnets not visible from the rest of the Internet
Mar-1-04 4/598N: Computer Networks

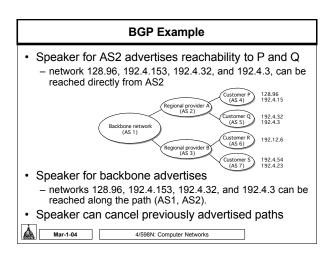
Supernetting

- Assign block of contiguous network numbers to nearby networks
- · Called CIDR: Classless Inter-Domain Routing
- Represent blocks with a single pair (first_network_address, count)
- Restrict block sizes to powers of 2
- Use a bit mask (CIDR mask) to identify block size
- · All routers must understand CIDR addressing

	Route Propagation
 site routers core router Autonomous correspond examples: assign eac 	local router know site routers know core router know everything System (AS) to an administrative domain Iniversity, company, backbone network AS a 16-bit number
 interior gate 	ute propagation hierarchy way protocol (each AS selects its own) eway protocol (Internet-wide standard)

Popular Interior Gateway Protocols


- RIP: Route Information Protocol
 - developed for XNS
 - distributed with Unix
 - distance-vector algorithm
 - based on hop-count
- · OSPF: Open Shortest Path First
 - recent Internet standard
 - uses link-state algorithm
 - supports load balancing
 - supports authentication


Mar-1-04 4/598N: Computer Networks

EGP: Exterior Gateway Protocol

· Overview

- designed for tree-structured Internet
- concerned with reachability, not optimal routes
- Protocol messages
 - neighbor acquisition: one router requests that another be its peer; peers exchange reachability information
 - neighbor reachability: one router periodically tests if the another is still reachable; exchange HELLO/ACK messages; uses a k-out-of-n rule
 - routing updates: peers periodically exchange their routing tables (distance-vector)

Multicast routing

- · Multicast list of sender and receiver not known
- Multicast within LANs is simple because we can use the underlying multicast capabilities of Ethernet
- Internet multicast implemented on top of a collection of networks that support broadcast by extending the routers
- Hosts join multicast groups using Internet Group Management Protocol (IGMP)
- How receivers and senders agree on a specific multicast address is orthogonal to routing issues
 - SDP Session description protocol
 - SAP Session announcement protocol
- Problem: Create multicast tree for the routers
- Mar-1-04 4/598N: Computer Networks

Link state multicast

- Each router monitors its lan for multicast packets
- Use this information to build shortest-path multicast tree
- May have to maintain information about each group (many multicast groups can co-exist at the same time)
 - Usually caches these trees

Mar-1-04 4/598N: Computer Networks

Distance Vector Multicast

· Two steps

Å١

- broadcast mechanism to forward packets to all the networks
- Pruning mechanism to remove networks that are not currently participating
- Reverse-Path Broadcast (RPB)
 - Routers forward packets along all the outgoing links (except ones that route towards to source)
- Reverse-Path Multicast (RPM)
 - Propagate "no members of G here" back to source

Mar-1-04 4/598N: Computer Networks

Protocol Independent Multicast (PIM) Define operating modes Sparse mode: If few routers are interested in this multicast Dense mode: When most routers want this stream Rendezvous point - RP Somehow choose RP Use RP to forward requests to join and prune multicast groups

· Creates source-specific tree or shared tree

Problem – debugging multicast topology

- Suppose multicast transmission from Berkeley to ND, the receiver is not receiving it. How do you debug it?
- Unicast tools link ping and traceroute do not work because we want to get the whole multicast topology; not if one host can get multicast
 - Just because Stanford is receiving this stream is no help to debug why it is not working for ND

Mar-1-04 4/598N: Computer Networks

Approaches

- · Receiver to Source direction
 - Multicast routing information is used to discover the tree topology
 - Need to know session identities
- · Source to receiver
 - Don't need the identities of receivers
 - Multicast forwarding information is used to get the tree

SNMP based approach

- Simple Network Management Protocol
- Each router maintains information. Query all routers to get routing info.

Mar-1-04 4/598N: Computer Networks

Approaches (cont.)

- Use other mechanisms (such as RTCP Real time Transport Control Protocol – part of RTP Realtime Transport Protocol)
- RTCP sends announcements periodically and use that to discover topology

 RTCP is unreliable

Peering and Transits

- · Thousands of ISPs. ISPs connect using transit providers and backbone providers to route packets
- Decisions are made on business goals and \$\$\$
- · Peering does not give access to other peering points, I.e. peering is non-transitive
- No explicit service level agreement (SLA)
- Peering can be cheaper
 - For example, Notre Dame can peer with Ameritech and ATT to transfer mutual traffic (from DSL and Cable customers)
 - Lower latency to preferred ISPs

À١ Mar-1-04 4/598N: Computer Networks

Notre Dame to Saint Marys

traceroute www.saintmarvs.edu

- traceroute to www.saintmarys.edu (147.53.8.10), 30 hops max, 40 byte packets
- 1 eafs-e06.gw.nd.edu (129.74.250.1) 0.664 ms 0.469 ms 0.450 ms 2 c245-e01.gw.nd.edu (129.74.245.14) 0.301 ms 0.574 ms 0.345 ms 3 monk-fe00.gw.nd.edu (129.74.45.4) 1.046 ms 0.918 ms 0.823 ms
- 4 klimek-i00.gw.nd.edu (129.74.248.102) 4.784 ms 4.569 ms 4.688 ms 5 mren-m10-lsd6509.startap.net (206.220.240.86) 4.863 ms 5.884 ms 6.659 ms
- 6 chin-mren-ge.abilene.ucaid.edu (198.32.11.97) 5.234 ms 4.512 ms 4.879 ms
- 7 iplsng-chima.abilene.ucaid.edu (198.32.8.77) 15.137 ms 22.735 ms 8.524 ms 8 ul-abilene.indiana.gigapop.net (192.12.206.250) 8.584 ms 9.009 ms 8.814 ms
- 9 intels-gwl-1ge15-0.ind.net (157.91.6.37) 8.458 ms 8.581 ms 8.823 ms 10 sbn-fa0-0.ind.net (199.8.76.73) 9.256 ms 8.826 ms 8.638 ms 11 stmarys-edu-T1.ind.net (199.8.73.110) 30.135 ms 26.131 ms 25.682 ms
- 12 ** smcswitch.saintmarys.edu (147.53.1.1) 31.876 ms !X

Mar-1-04 4/598N: Computer Networks

Reasons why you don't peer

No explicit SLA

Å[

- · Use cold-potato algorithm to offset traffic costs
 - Carry traffic in your local network as much as possible rather than use an optimal (possibly more expensive transit route)
 - Transit points use hot potato algorithm, dumping the packets as soon as possible to the back bone (even if it was not optimal)
- Don't want to help potential competitors
 - Ameritech would want your friends to move to Ameritech so that you all can get faster traffic, not peer with AT&T so that you can enjoy the benefit