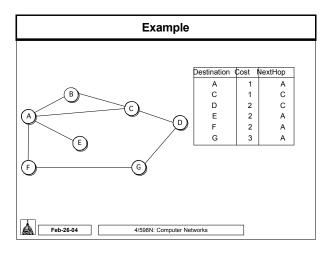
Overview 4.2: Routing

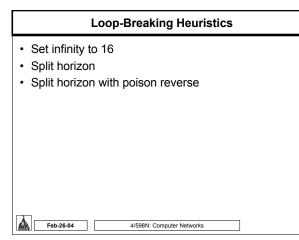
- Forwarding vs Routing

 forwarding: to select an output port based on destination address and routing table
 - routing: process by which routing table is built
- Network as a Graph


- Problem: Find lowest cost path between two nodes
- Factors
 - static: topology
 - dynamic: load
 - Distributed algorithm

Feb-26-04 4/598N: Computer Networks

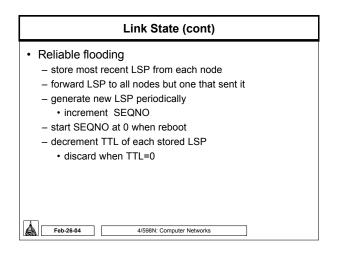
Distance Vector (e.g. RIP v1)

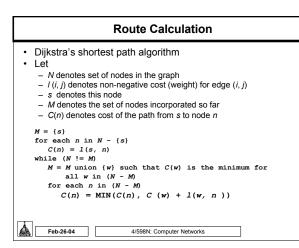

- Each node maintains a set of triples – (Destination, Cost, NextHop)
- Directly connected neighbors exchange updates
 periodically (on the order of several seconds)
 - whenever table changes (called triggered update)
- Each update is a list of pairs:
- (Destination, Cost)
- · Update local table if receive a "better" route
 - smaller cost
 - came from next-hop
- · Refresh existing routes; delete if they time out

Feb-26-04 4/598N: Computer Networks

Routing Loops	
Example 1	
 F detects that link to G has failed 	
 F sets distance to G to infinity and sends update to A 	
 A sets distance to G to infinity since it uses F to reach G 	
 A receives periodic update from C with 2-hop path to G 	
 A sets distance to G to 3 and sends update to F 	
 F decides it can reach G in 4 hops via A 	
Example 2	
 link from A to E fails 	
 A advertises distance of infinity to E 	
 B and C advertise a distance of 2 to E 	
 B decides it can reach E in 3 hops; advertises this to A 	
 A decides it can read E in 4 hops; advertises this to C 	
 C decides that it can reach E in 5 hops 	
Feb-26-04 4/598N: Computer Networks	

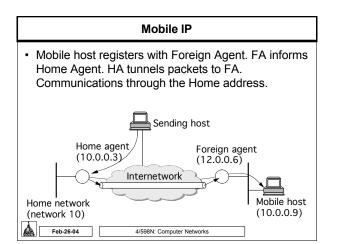
Link State (e.g. OSPF)

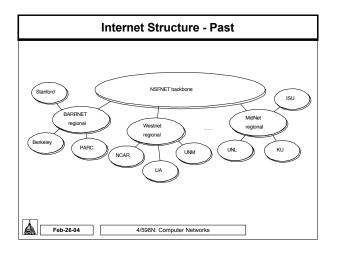

Strategy


_	- send to all nodes (not just neighbors) information a	about
	directly connected links (not entire routing table)	

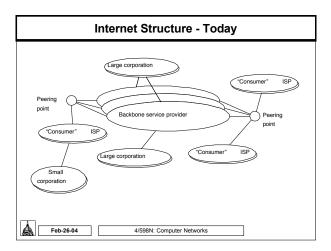
• Link State Packet (LSP)

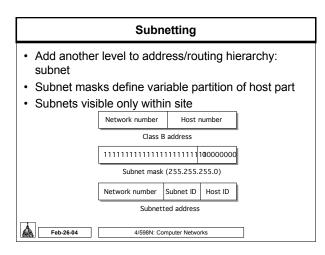
- id of the node that created the LSP
- cost of link to each directly connected neighbor
- sequence number (SEQNO)
- time-to-live (TTL) for this packet

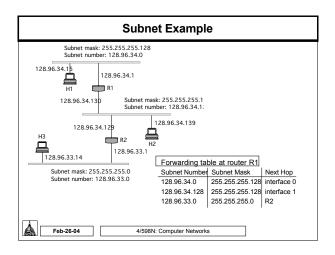

Feb-26-04 4/598N: Computer Networks



Metrics
 Original ARPANET metric measures number of packets queued on each link took neither latency or bandwidth into consideration New ARPANET metric stamp each incoming packet with its arrival time (AT) record departure time (DT) when link-level ACK arrives, compute Delay = (DT - AT) + Transmit + Latency if timeout, reset DT to departure time for retransmission
 link cost = average delay over some time period Fine Tuning
 compressed dynamic range replaced Delay with link utilization
Feb-26-04 4/598N: Computer Networks

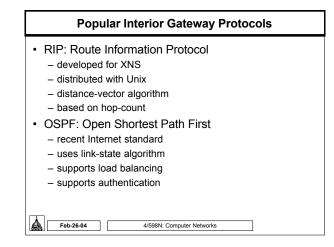

Mobility	
What if nodes move	
 You need a new IP address when you move 	
- Communications (sockets) have to be reestablished	
- One solution is to use Dynamic DNS with DHCP	
Used at ND	
 When a host moves, DHCP gives it a new address and Dynamic DNS updates the DNS entry with the new DHCP address 	
 For example, my laptop is called kural.cse.nd.edu, but may map into different IP addresses depending on where I am 	
Works for new connections, old connections break	
 Can only work within the same domain (because DNS servers are only administered for the domain) 	
Feb-26-04 4/598N: Computer Networks	





Forwarding Algorithm
<pre>D = destination IP address for each entry (SubnetNum, SubnetMask, NextHop) D1 = SubnetMask & D if D1 = SubnetNum if NextHop is an interface deliver datagram directly to D else deliver datagram to NextHop</pre>
 Use a default router if nothing matches Not necessary for all 1s in subnet mask to be contiguous Can put multiple subnets on one physical network Subnets not visible from the rest of the Internet
Feb-26-04 4/598N: Computer Networks

Supernetting


- Assign block of contiguous network numbers to nearby networks
- Called CIDR: Classless Inter-Domain Routing
- Represent blocks with a single pair (first_network_address, count)
- Restrict block sizes to powers of 2
- Use a bit mask (CIDR mask) to identify block size
- All routers must understand CIDR addressing

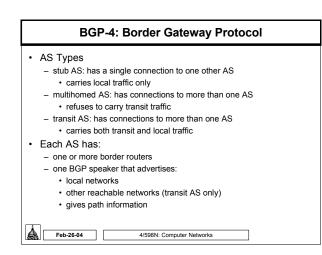
Feb-26-04 4/598N: Computer Networks

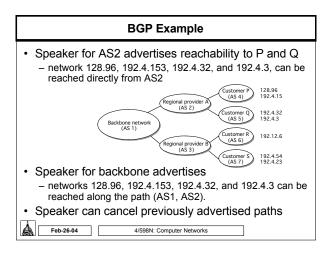
Route Propagation

- · Know a smarter router
 - hosts know local router
 - local routers know site routers
 - site routers know core router
 - core routers know everything
- Autonomous System (AS)
 - corresponds to an administrative domain
 - examples: University, company, backbone network
 - assign each AS a 16-bit number
- Two-level route propagation hierarchy
 - interior gateway protocol (each AS selects its own)
 - exterior gateway protocol (Internet-wide standard)

Feb-26-04 4/598N: Computer Networks

EGP: Exterior Gateway Protocol


· Overview


Å٢

Feb-26-04

- designed for tree-structured Internet
- concerned with reachability, not optimal routes
- Protocol messages
 - neighbor acquisition: one router requests that another be its peer; peers exchange reachability information
 - neighbor reachability: one router periodically tests if the another is still reachable; exchange HELLO/ACK messages; uses a k-out-of-n rule
 - routing updates: peers periodically exchange their routing tables (distance-vector)

4/598N: Computer Networks

