

ARP Details

- Request Format
 - HardwareType: type of physical network (e.g., Ethernet)
 - ProtocolType: type of higher layer protocol (e.g., IP)
 - HLEN & PLEN: length of physical and protocol addresses
 - Operation: request or response
 - Source/Target-Physical/Protocol addresses
- Notes
 - table entries timeout in about 10 minutes
 - update table with source when you are the target
 - update table if already have an entry
 - do not refresh table entries upon reference

	ARI	P Pack	et Format
0	8	16	i
Hardwar	e type = 1		ProtocolType = 0x0800
HLen = 48	PLen	= 32	Operation
	SourceHar	dwareAddr	(bytes 0 _ 3)
SourceHardware	Addr (bytes 4	_ 5)	SourceProtocolAddr (bytes 0 _ 1)
SourceProtocol	Addr (bytes 2	_ 3) .	TargetHardwareAddr (bytes 0 _ 1)
	TargetHa	rdwareAdd	r (bytes 2 _ 5)
	TargetPr	otocolAddr	(bytes 0 _ 3)
L			
Feb-24-04		4/598N: Con	nputer Networks

Sa	imple arp t	able in darw	/in.c	c.nd.edu
• arp -a				
Net to Media	Table: IPv4 ddress	Mask	Flags	Phys Addr
hme0 eafs-e	06.gw.nd.edu	255.255.255.255		00:d0:c0:d3:aa:40
hme0 bind.n	d.edu	255.255.255.255		08:00:20:8a:5f:cf
hme0 honcho	-jr.cc.nd.edu	255.255.255.255		00:b0:d0:82:83:7f
hme0 mail-v	ip.cc.nd.edu	255.255.255.255		02:e0:52:0c:56:c4
hme0 john.h	elios.nd.edu	255.255.255.255		08:00:20:85:db:c4
hme0 casper	.helios.nd.edu	255.255.255.255		08:00:20:b1:f8:e1
hme0 pinky.	helios.nd.edu	255.255.255.255		08:00:20:a9:88:30
Feb-24-0	4	4/598N: Computer Netwo	orks	

ARP problems

- ARP trusts any response no authentication method
 - Works great at home, how about Notre Dame
- Replies which do not correspond to requests are allowed to update cache in many instances
- · New information must supercede old info

Internet Control Message Protocol (ICMP)

4/598N: Computer Networks

• Echo (ping)

Feb-24-04

- /usr/src/sbin/ping/ping.c
- Redirect (from router to source host)
- Destination unreachable (protocol, port, or host)
- TTL exceeded (so datagrams don't cycle forever)
 _/usr/src/contrib/traceroute/traceroute.c
- · Checksum failed
- · Reassembly failed
- Cannot fragment

• Forwarding vs Routing

- forwarding: to select an output port based on destination address and routing table
- routing: process by which routing table is built
- Network as a Graph
 - 4 (B) (L)
- Problem: Find lowest cost path between two nodes
- Factors
 - static: topology
 - dynamic: load
 - Distributed algorithm

Feb-24-04 4/598N: Computer Networks

Distance Vector (e.g. RIP v1)

- Each node maintains a set of triples
 (Destination, Cast, NortHop)
- (Destination, Cost, NextHop)
- Directly connected neighbors exchange updates
 - periodically (on the order of several seconds)
 - whenever table changes (called triggered update)
- Each update is a list of pairs:
 - (Destination, Cost)
- Update local table if receive a "better" route
 - smaller cost
 - came from next-hop
- Refresh existing routes; delete if they time out

Routing Loops Example 1 F detects that link to G has failed F sets distance to G to infinity and sends update to A A sets distance to G to infinity since it uses F to reach G A sectives periodic update from C with 2-hop path to G A sets distance to G to 3 and sends update to F F decides it can reach G in 4 hops via A Example 2 Inik from A to E fails A advertises distance of 1 finity to E B and C advertise a distance of 2 to E B decides it can reach E in 3 hops; advertises this to A A decides it can read E in 4 hops; advertises this to C

- C decides that it can reach E in 5 hops...

Å٢

Feb-24-04 4/598N: Computer Networks

Loop-Breaking Heuristics
 Set infinity to 16 Split horizon Split horizon with poison reverse

Link State (cont)

· Reliable flooding

- store most recent LSP from each node
- forward LSP to all nodes but one that sent it
- generate new LSP periodically
 increment SEQNO
- start SEQNO at 0 when reboot
- decrement TTL of each stored LSP
 - discard when TTL=0

Metrics
Original ARPANET metric
 took neither latency or bandwidth into consideration
New ARPANET metric – stamp each incoming packet with its arrival time (AT)
 record departure time (DT)
 When link-level ACK arrives, compute Delay = (DT - AT) + Transmit + Latency
 if timeout, reset DT to departure time for retransmission link cost = average delay over some time period
• Fine Tuning
 compressed dynamic range replaced Delay with link utilization
Enh 24.04 (1609N): Computer Mehundre
4/330/N. Computer Networks