» Error detection

* Reliable transmission

Jan-26-03 4/598N: Computer Networks

Error Detection

A

Cyclic Redundancy Check

+ Add k bits of redundant data to an n-bit message
—wantk <<n
—e.g., k=32and n = 12,000 (1500 bytes)

» Represent n-bit message as n-1 degree polynomial
- e.g., MSG=10011010 as M(x) = x7 + x* + x3 + x!

* Let k be the degree of some divisor polynomial
-eg,Cx)=x3+x2+1

Jan-26-03 4/598N: Computer Networks | 3]

CRC (cont)

+ Transmit polynomial P(x) that is evenly divisible by
C(x)
— shift left k bits, i.e., M(x).xk
— subtract remainder of M(x).xk/C(x) from M(x).xk
» Receiver polynomial P(x) + E(x)
— E(x) = 0 implies no errors _
+ Divide (P(x) + E(x)) by C(x); remainder zero if:
— E(x) was zero (no error), or
— E(x) is exactly divisible by C(x)

Jan-26-03 4/598N: Computer Networks

Selecting C(x)

« All single-bit errors, as long as the xk and x0 terms
have non-zero coefficients.

« All double-bit errors, as long as C(x) contains a
factor with at least three terms

» Any odd number of errors, as long as C(x) contains
the factor (x + 1)

» Any ‘burst’ error (i.e., sequence of consecutive error
bits) for which the length of the burst is less than k
bits.

* Most burst errors of larger than k bits can also be
detected

+ See Table 2.6 on page 102 for common C(x)

Jan-26-03 4/598N: Computer Networks | 5]

Internet Checksum Algorithm

» View message as a sequence of 16-bit integers;
sum using 16-bit ones-complement arithmetic; take
ones-complement of the result.

u_short cksum(u_short *buf, int count) {
register u_long sum = 0;
while (count--){
sum += *buf++;
if (sum & OxXFFFF0000) {
/* carry occurred, so wrap around */
sum &= OxFFFF;
sum++;

}

}
return ~(sum & OxFFFF) ;
}

Jan-26-03 4/598N: Computer Networks | 6]

Reliable Transmission

A

Acknowledgements and Timeouts

» ACK - Control frame sent back to peers saying that
it successfully received an earlier frame

 If no ack without reasonable time, timeout and
retransmit packet

» Automatic Repeat Request - ARQ

Jan-26-03 4/598N: Computer Networks | 8]

Acknowledgements & Timeouts

Sepder Recgiver Sender Recgiver
(a) (c)
Sender Recgiver Sender Recgiver

(d)

(b)
Jan-26-03 4/598N: Computer Networks | 9]

Stop-and-Wait
» Problem: keeping the pipe full
— (bandwidth delay product)
» Example
— 1.5Mbps link x 45ms RTT = 67.5Kb (8KB)
— 1 KB frames imples 1/8th link utilization

Sender Receiver

Jan-26-03 4/598N: Computer Networks

Sliding Window
+ Allow multiple outstanding (un-ACKed) frames
» Upper bound on un-ACKed frames, called window

Sender Receiver

Jan-26-03 4/598N: Computer Networks

+ Assign sequence number to each frame (SeqNum)
+ Maintain three state variables:

— send window size (SWS)

— last acknowledgment received (LAR)

— last frame sent (LFS)

* Maintain invariant: LFS - LAR <= SWS

LAR LFS
» Advance LAR when ACK arrives
 Buffer up to SWS frames

Jan-26-03 4/598N: Computer Networks

+ Maintain three state variables
— receive window size (RWS)
— largest frame acceptable (LFA)
— last frame received (NFE)

* Maintain invariant: LFA - LFR <= RWS

= RWS

* Frame SeqNum arrives:

— if LFR < SeqNum <=LFA — accept

— if SegNum < = LFR or SeqNum > LFA — discarded
» Send cumulative ACKs

Jan-26-03 4/598N: Computer Networks

Sequence Number Space

» SeqNum field is finite; sequence numbers wrap around
+ Sequence number space must be larger then number of
outstanding frames
* SWS <= MaxSeqNum-1 is not sufficient
— suppose 3-bit SeqNum field (0..7)
— SWS=RWS=7
— sender transmit frames 0..6
— arrive successfully, but ACKs lost
— sender retransmits 0..6
— receiver expecting 7, 0..5, but receives second incarnation of 0..5
+ SWS < (MaxSeqNum+1)/2 is correct rule
+ Intuitively, SeqNum “slides” between two halves of sequence
number space

Jan-26-03 4/598N: Computer Networks

Concurrent Logical Channels

» Multiplex 8 logical channels over a single link
* Run stop-and-wait on each logical channel
» Maintain three state bits per channel

— channel busy

— current sequence number out

— next sequence number in

» Header: 3-bit channel num, 1-bit sequence num
— 4-bits total
— same as sliding window protocol

+ Separates reliability from order

Jan-26-03 4/598N: Computer Networks

Shared Access Networks

Bus (Ethernet)
Token ring (FDDI)
Wireless (802.11)

A

Ethernet Overview

 History
— developed by Xerox PARC in mid-1970s
— roots in Aloha packet-radio network
— standardized by Xerox, DEC, and Intel in 1978
— similar to IEEE 802.3 standard
+ CSMA/CD
— carrier sense
— multiple access
— collision detection
» Frame Format

64 48 48 16 32
Dest | Src
|Preamb+ addr | addr Type| Body%ﬂCRCi

Ethernet (cont)

+ Addresses
— unique, 48-bit unicast address assigned to each adapter
— example: 8:0:e4:b1:2
— broadcast: all 1s
— multicast: first bit is 1
+ Bandwidth: 10Mbps, 100Mbps, 1Gbps
+ Length: 2500m (500m segments with 4 repeaters)

» Problem: Distributed algorithm that provides fair
access

Jan-26-03 4/598N: Computer Networks

Transmit Algorithm Algorithm (cont)

* Iflineisidle... * If collision...
— send immediately — jam for 32 bits, then stop transmitting frame
— upper bound message size of 1500 bytes — minimum frame is 64 bytes (header + 46 bytes of data)
— must wait 9.6us between back-to-back frames — delay and try again
» 1sttime: 0 or 51.2us
« Ifline is busy... * 2nd time: 0, 51.2, or 102.4us
— wait until idle and transmit immediately * 3rd time51.2, 102.4, or 153.6us
— called 1-persistent (special case of p-persistent) + nth time: k x 51.2us, for randomly selected k=0..2n - 1

* give up after several tries (usually 16)
 exponential backoff

Jan-26-03 4/598N: Computer Networks Jan-26-03 4/598N: Computer Networks | 2]

Collisions

l
o] Iﬂ I_ﬂ

g2 (@ (3 g

Jan-26-03 4/598N: Computer Networks

