

Cyclic Redundancy Check

- Add k bits of redundant data to an n-bit message – want k << n
 - e.g., k = 32 and n = 12,000 (1500 bytes)
- Represent n-bit message as n-1 degree polynomial – e.g., MSG=10011010 as M(x) = x⁷ + x⁴ + x³ + x¹
- Let k be the degree of some divisor polynomial
 e.g., C(x) = x³ + x² + 1

CRC (cont)

- Transmit polynomial $\mathsf{P}(x)$ that is evenly divisible by $\mathsf{C}(x)$
 - shift left k bits, i.e., $M(x).x^k$
 - subtract remainder of $M(x).x^k/C(x)$ from $M(x).x^k$
- Receiver polynomial P(x) + E(x)
 E(x) = 0 implies no errors _
- Divide (P(x) + E(x)) by C(x); remainder zero if:
 - E(x) was zero (no error), or

Jan-26-03

– E(x) is exactly divisible by C(x)

Selecting C(x)

- All single-bit errors, as long as the x^k and x⁰ terms have non-zero coefficients.
- All double-bit errors, as long as C(x) contains a factor with at least three terms
- Any odd number of errors, as long as C(x) contains the factor (x + 1)
- Any 'burst' error (i.e., sequence of consecutive error bits) for which the length of the burst is less than k bits.
- Most burst errors of larger than k bits can also be detected
- See Table 2.6 on page 102 for common C(x)

Jan-26-03 4/598N: Computer Net

Jan-26-03

SW: Receiver

 Maintain three state variables - receive window size (RWS) - largest frame acceptable (LFA) - last frame received (NFE) • Maintain invariant: LFA - LFR <= RWS [≤] RWS NFE LFA Frame SegNum arrives: – if LFR < SegNum < = LFA</p> → accept – if SeqNum < = LFR or SeqNum > LFA --> discarded · Send cumulative ACKs Jan-26-03 4/598N: Computer Networks

Sequence Number Space · SeqNum field is finite; sequence numbers wrap around · Sequence number space must be larger then number of outstanding frames SWS <= MaxSeqNum-1 is not sufficient - suppose 3-bit SeqNum field (0..7) - SWS=RWS=7 - sender transmit frames 0..6 - arrive successfully, but ACKs lost - sender retransmits 0..6 - receiver expecting 7, 0..5, but receives second incarnation of 0..5 SWS < (MaxSeqNum+1)/2 is correct rule · Intuitively, SeqNum "slides" between two halves of sequence number space 🛕 Jan-26-03 4/598N: Computer Networks 14

Concurrent Logical Channels

13

15

- Multiplex 8 logical channels over a single link
- · Run stop-and-wait on each logical channel
- · Maintain three state bits per channel
 - channel busy
 - current sequence number out
 - next sequence number in
- Header: 3-bit channel num, 1-bit sequence num - 4-bits total
 - same as sliding window protocol
- · Separates reliability from order

Ethernet Overview

History

Jan-26-03

- developed by Xerox PARC in mid-1970s
- roots in Aloha packet-radio network
- standardized by Xerox, DEC, and Intel in 1978
- similar to IEEE 802.3 standard
- · CSMA/CD
 - carrier sense
 - multiple access
 - collision detection
- Frame Format

Shared Access Networks

Bus (Ethernet) Token ring (FDDI) Wireless (802.11)

Å

Ethernet (cont)

Addresses

۸I

Jan-26-03

- unique, 48-bit unicast address assigned to each adapter
- example: 8:0:e4:b1:2
- broadcast: all 1s
- multicast: first bit is 1
- · Bandwidth: 10Mbps, 100Mbps, 1Gbps
- Length: 2500m (500m segments with 4 repeaters)
- · Problem: Distributed algorithm that provides fair access

18

Transmit Algorithm	
If line is idle	
 send immediately 	
 upper bound message size of 1500 bytes 	
 must wait 9.6us between back-to-back frames 	
If line is busy	
 wait until idle and transmit immediately 	
– called 1-persistent (special case of p-persistent)	
Jan-26-03 4/598N: Computer Networks 19	

