
1

SACK TCP

(RFC 2018)

Mar-6-03 4/598N: Computer Networks 2

What’s Wrong with Current TCP?

• TCP uses a cumulative acknowledgment scheme, in
which the receiver identifies the last byte of data
successfully received.

• Received segments that are not at the left window
edge are not acknowledged.

• This scheme forces the sender to either wait a
roundtrip time to find out a segment was lost, or
unnecessarily retransmit segments which have been
correctly received.

• Results in significantly reduced overall throughput.

Mar-6-03 4/598N: Computer Networks 3

Selective Acknowledgment TCP

• Selective Acknowledgment (SACK) allows the
receiver to inform the sender about all segments that
have been successfully received.

• Allows the sender to retransmit only those segments
that have been lost.

• SACK is implemented using two different TCP
options.

Mar-6-03 4/598N: Computer Networks 4

The SACK-Permitted Option

• The first TCP option is the enabling option, “SACK-
permitted,” allowed only in a SYN segment.

• This indicates that the sender can handle SACK
data and the receiver should send it, if possible.
(Both sides can enable SACK, but each direction of
the TCP connection is treated independently.)

Kind = 4 Length = 2

HL = 6

standard

TCP header

options field

TCP header length

Kind = 1 Kind = 1

SACK-permitted NOP NOP

SYN bit

1

Mar-6-03 4/598N: Computer Networks 5

The SACK Option

• If the SACK-permitted option is
received, the receiver may send
the SACK option.

Kind = 1 Kind = 1

HL = Y

Kind = 5 Length = X

Right Edge of 1st Block
Left Edge of 1st Block

Right Edge of nth Block
Left Edge of nth Block

standard

TCP header

options field

What is a simple formula 

for the SACK option

 length field (based on n, 

the number of blocks 

in the option)?

(2 + 8 * n) bytes

What is the maximum

number of SACK 

blocks possible?  Why?

The maximum size of the 

options field

is 40 bytes, giving a 

maximum of 4 SACK 

blocks (barring no 

other TCP options). Mar-6-03 4/598N: Computer Networks 6

The SACK Option

• Each block in a SACK represents bytes successfully
received that are contiguous and isolated (the bytes
immediately to the left and the right have not yet
been received).

send er

r eceiv er

5500-5999
6000-6499

5000-5499

ACK 5500

6500-6999

ACK 5500; SACK=6000-6500

ACK 5500; SACK=6000-7000



2

Mar-6-03 4/598N: Computer Networks 7

SACK TCP Rules

• A SACK cannot be sent unless the SACK-permitted
option has been received (in the SYN).

• If a receiver has chosen to send SACKs, it must
send them whenever it has data to SACK at the time
of an ACK.

• The receiver should send an ACK for every valid
segment it receives containing new data (standard
TCP behavior), and each of these ACKs should
contain a SACK, assuming there is data to SACK.

Mar-6-03 4/598N: Computer Networks 8

SACK TCP Rules

• The first SACK block must contain the most recently
received segment that is to be SACKed.

• The second block must contain the second most
recently received segment that is to be SACKed,
and so forth.

• Notice this can result in some data in the receiver’s
buffers which should be SACKed but is not (if there
are more segments to SACK than available space in
the TCP header).

Mar-6-03 4/598N: Computer Networks 9

se nd er

rece ive r

5000-5499

6500-6999

6000-6499

8000-8499

7000-7499

ACK 5500

ACK 5500; SACK=6000-6500

ACK 5500; SACK=7000-7500, 6000-6500
7500-7999

8500-8999

5500-5999

ACK 5500; SACK=8000-8500, 7000-7500, 6000-6500

ACK 5500; SACK=9000-9500, 8000-8500, 7000-7500

9000-9499

SACK TCP Example
       (assuming a maximum of 3 blocks)

Mar-6-03 4/598N: Computer Networks 10

SACK TCP Example (continued)

• At this point, the 4th segment (6500-6999) is
received.  After the receiver acknowledges this
reception, the 2nd segment (5500-5999) is received.

se nde r

r ece iver

6500-6999

ACK 5500; SACK=6000-7500,9000-9500,8000-8500

5500-5999

ACK 7500; SACK=9000-9500,8000-8500

ACK 5500; SACK=9000-9500, 8000-8500, 7000-7500

Mar-6-03 4/598N: Computer Networks 11

What Should the Sender do?

• The sender must keep a buffer of unacknowledged
data.  When it receives a SACK option, it should turn
on a SACK-flag bit for all segments in the transmit
buffer that are wholly contained within one of the
SACK blocks.

• After this SACK flag bit has been turned on, the
sender should skip that segment during any later
retransmission.

Mar-6-03 4/598N: Computer Networks 12

SACK TCP at the Sender Example

sende r

rece iver

6000-6499

ACK 5500; SACK=6000-6500

5500-5999

6500-6999
7000-7499

ACK 5500; SACK=6000-7000

5000-5499

5500-5999
7000-7499

ACK 5500; SACK=6000-7500SENDER
TIMEOUT



3

Mar-6-03 4/598N: Computer Networks 13

Receiver Has A
Two-Segment Buffer (A Problem?)

se nde r

re cei ve r

Receiver’s Buffer
5000-5499

5500-5999

6000-6499

6500-6999

5000-5499

6000-6499

6000-6499

6500-6999

5500-5999

ACK 5500; SACK=6000-6500

ACK 5500; SACK=6000-7000

5500-5999 6500-6999

What is the ACK / SACK segment

sent from the receiver at this point?

ACK 6000; SACK=6500-7000

Mar-6-03 4/598N: Computer Networks 14

Reneging in SACK TCP

• It is possible for the receiver to SACK some data
and then later discard it.  This is referred to as
reneging. This is discouraged, but permitted if the
receiver runs out of buffer space.

• If this occurs,
– The first SACK block must still reflect the newest segment,

i.e. contain the left and right edges of the newest segment,
even if that segment is going to be discarded.

– Except for the newest segment, all SACK blocks must not
report any old data that has been discarded.

Mar-6-03 4/598N: Computer Networks 15

Reneging in SACK TCP

• Therefore, the sender must maintain normal TCP
timeouts.  A segment cannot be considered received
until an ACK is received for it.  The sender must
retransmit the segment at the left window edge after
a retransmit timeout, even if the SACK bit is on for
that segment.

• A segment cannot be removed from the transmit
buffer until the left window edge is advanced over it,
via the receiving of an ACK.

Mar-6-03 4/598N: Computer Networks 16

SACK TCP Observations

• SACK TCP follows standard TCP congestion control;
it should not damage the network.

• SACK TCP has an advantage over other
implementations (Reno, Tahoe, Vegas, and
NewReno) as it has added information due to the
SACK data.

• This information allows the sender to better decide
what it needs to retransmit and what it does not.
This can only serve to help the sender, and should
not adversely affect other TCPs.

Mar-6-03 4/598N: Computer Networks 17

SACK TCP Observations

• While it is still possible for a SACK TCP to
needlessly retransmit segments, the number of
these retransmissions has been shown to be quite
low in simulations, relative to Reno and Tahoe TCP.

• In any case, the number of needless
retransmissions must be strictly less than
Reno/Tahoe TCP.  As the sender has additional
information from which to devise its retransmission
scheme, worse performance is not possible (barring
a flawed implementation).

Mar-6-03 4/598N: Computer Networks 18

SACK TCP
Implementation Progress

• Current SACK TCP implementations:
– Windows 2000

– Windows 98 / Windows ME

– Solaris 7 and later

– Linux kernel 2.1.90 and later

– FreeBSD and NetBSD have optional modules

• ACIRI has measured the behavior of 2278 random
web servers that claim to be SACK-enabled.  Out of
these, 2133 (93.6%) appeared to ignore SACK data
and only 145 (6.4%) appeared to actually use the
SACK data.



4

D-SACK TCP

(RFC 2883)

Mar-6-03 4/598N: Computer Networks 20

One Step Further: D-SACK TCP

• Duplicate-SACK, or D-SACK is an extension to
SACK TCP which uses the first block of a SACK
option is used to report duplicate segments that
have been received.

• A D-SACK block is only used to report a duplicate
contiguous sequence of data received by the
receiver in the most recent segment.

• Each duplicate is reported at most once.
• This allows the sender TCP to determine when a

retransmission was not necessary.  It may not have
been necessary due to the retransmit timer expiring
prematurely or due to a false Fast Retransmit (3
duplicate ACKs received due to network reordering).

Mar-6-03 4/598N: Computer Networks 21

D-SACK Example
(packet replicated by the network)

rece iver

send er

3500-3999

4000-4499

ACK 4000

4500-4999

ACK 4000; SACK=4500-5000

5000-5499

ACK 4000; SACK=4500-5500

ACK 4000; SACK=5000-5500, 4500-5500

Mar-6-03 4/598N: Computer Networks 22

D-SACK Example (losses, and the sender changes
the segment size)

se nder

rece ive r

500-999

1500-1999

2500-2999

3000-3499

1000-1499

2000-2499 ACK 1000

ACK 1000; SACK=3000-3500

ACK 1500; SACK=3000-3500

ACK 1500; SACK=2000-2500,3000-3500

1000-2499

ACK 2500; SACK=1000-1500, 3000-3500

Mar-6-03 4/598N: Computer Networks 23

D-SACK TCP Rules

• If the D-SACK block reports a duplicate sequence
from a (possibly larger) block of data in the receiver
buffer above the cumulative acknowledgement, the
second SACK block (the first non D-SACK block)
should specify this block.

• As only the first SACK block is considered to be a D-
SACK block, if multiple sequences are duplicated,
only the first is contained in the D-SACK block.

Mar-6-03 4/598N: Computer Networks 24

D-SACK TCP and Retransmissions
• D-SACK allows TCP to determine when a retransmission was not

necessary (it receives a D-SACK after it retransmitted a segment).
When this determination is made, the sender can “undo” the
halving of the congestion window, as it will do when a segment is
retransmitted (as it assumes net congestion).

• D-SACK also allows TCP to determine if the network is duplicating
packets (it will receive a D-SACK for a segment it only sent once).

• D-SACK’s weakness is that is does not allow a sender to
determine if both the original and retransmitted segment are
received, or the original is lost and the retransmitted segment is
duplicated by the network.



5

Mar-6-03 4/598N: Computer Networks 25

SACK and D-SACK Interaction

• There is no difference between SACK and D-SACK,
except that the first SACK block is used to report a
duplicate segment in D-SACK.

• There is no separate negotiation/options for D-
SACK.

• There are no inherit problems with having the
receiver use D-SACK and having the sender use
traditional SACK.  As the duplicate that is being
reported is still being SACKed (for the second or
greater time), there is no problem with a SACK TCP
using this extension with a D-SACK TCP (although
the D-SACK specific data is not used).

Increasing the Maximum
TCP Initial Window Size

(RFC 2414)

Mar-6-03 4/598N: Computer Networks 27

Increasing the Initial Window

• RFC 2414 specifies an experimental change to TCP, the
increasing of the maximum initial window size, from one
segment to a larger value.

• This new larger value is given as:

• This translates to:
min ( 4*MSS, max ( 2*MSS, 4380 bytes) )

<= 2 * MSS>= 2190 bytes

<= 4380 bytes1095 bytes < MSS < 2190 bytes

<= 4 * MSS<= 1095 bytes

Maximum Initial Window SizeMaximum Segment Size (MSS)

Mar-6-03 4/598N: Computer Networks 28

Increasing the Initial Window

sende r

rece iv er

sende r

r eceiver

Slow-Start TCP RFC 2414 TCP

…
P

R
O

C
E

SSIN
G

 D
E

LA
Y…

…
P

R
O

C
E

SSIN
G

 D
E

LA
Y…

Mar-6-03 4/598N: Computer Networks 29

Advantages of an
Increased Initial Window Size

• This change is in contrast to the slow start
mechanism, which initializes the initial window size
to one segment.  This mechanism is in place to
implement sender-based congestion control (see
RFC 2001 for a complete discussion).

• This new larger window offers three distinct
advantages:
– With slow start, a receiver which uses delayed ACKs is

forced to wait for a timeout before generating an ACK.
With an initial window of at least two segments, the
receiver will generate an ACK after the second segment
arrives, causing a speedup in data acknowledgement.

Mar-6-03 4/598N: Computer Networks 30

Advantages of an
Increased Initial Window Size

– For TCP connections transferring a small amount of data
(such as SMTP and HTTP requests), the larger initial
window will reduce the transmission time, as more data
can be outstanding at once.

– For TCP connections transferring a large amount of data
with high propagation delays (long haul pipes; such as
backbone connects and satellite links), this change
eliminates up to three round-trip times (RTTs) and a
delayed ACK timeout during the initial slow start.



6

Mar-6-03 4/598N: Computer Networks 31

Disadvantages of an
Increased Initial Window Size

• This approach also has disadvantages:
– This approach could cause increased congestion, as

multiple segments are transmitted at once, at the
beginning of the connection.  As modern routers tend to
not handle bursty traffic well (Drop Tail queue
management), this could increase the drop rate.

• ACIRI research on this topic concludes that there is
no more danger from increasing the initial TCP
window size to a maximum of 4KB than the
presence of UDP communications (that do not have
end-to-end congestion control).

Mar-6-03 4/598N: Computer Networks 32

Increased Initial Window Size
Implementation Progress

• Looking at ACIRI observations, current web servers
use a wide range of initial TCP window sizes,
ranging from one segment (slow start) to seventeen
segments.

• This is a clear violation of RFC 2414, not to mention
RFC 2001 (the currently approved IETF/ISOC
standard).

• Such large initial window sizes seem to indicate a
greedy TCP, not conforming to the required sender-
side congestion control window (even if the
experimental higher initial window is considered).

Mar-6-03 4/598N: Computer Networks 33

Summary

• SACK TCP provides additional information to the
sender, allowing the reduction of needless
retransmissions.  There is no danger in providing
this information, it simply serves to make a “smarter”
TCP sender.

• D-SACK TCP allows the sender to determine when
it has needlessly resent segments.  This will allow
the sender to continuously refine its retransmission
strategy and undo unnecessary and incorrect
congestion control mechanisms.

• Increasing the initial TCP window is a slight change
that has advantages for both small and large data
transfers, without significantly affecting the
congestion control a smaller window provides.

Mar-6-03 4/598N: Computer Networks 34

Remote Procedure Call

• Outline
– Protocol Stack

– Presentation Formatting

Mar-6-03 4/598N: Computer Networks 35

RPC Timeline

Client Server

Request

Reply

Computing

Blocked

Blocked

Blocked

Mar-6-03 4/598N: Computer Networks 36

RCP Components

• Protocol Stack
– BLAST: fragments and reassembles large messages

– CHAN: synchronizes request and reply messages

– SELECT: dispatches request to the correct process

• Stubs Caller
(client)

Client
stub

RPC
protocol

Return
valueArguments

ReplyRequest

Callee
(server)

Server
stub

RPC
protocol

Return
valueArguments

ReplyRequest



7

Mar-6-03 4/598N: Computer Networks 37

Bulk Transfer (BLAST)

• Unlike AAL and IP, tries to recover from lost
fragments

• Strategy
– selective retransmission

– aka partial acknowledgements

Sender Receiver

Fragment 1
Fragment 2Fragment 3

Fragment 5

Fragment 4

Fragment 6

Fragment 3
Fragment 5

SRR

SRR

Mar-6-03 4/598N: Computer Networks 38

BLAST Details

• Sender:
– after sending all fragments, set timer DONE

– if receive SRR, send missing fragments and reset DONE

– if timer DONE expires, free fragments

Mar-6-03 4/598N: Computer Networks 39

BLAST Details (cont)

• Receiver:
– when first fragments arrives, set timer LAST_FRAG

– when all fragments present, reassemble and pass up

– four exceptional conditions:

• if last fragment arrives but message not complete
– send SRR and set timer RETRY

• if timer LAST_FRAG expires
– send SRR and set timer RETRY

• if timer RETRY expires for first or second time
– send SRR and set timer RETRY

• if timer RETRY expires a third time
– give up and free partial message

Mar-6-03 4/598N: Computer Networks 40

BLAST Header Format

• MID must protect against wrap around

• TYPE = DATA or SRR

• NumFrags indicates number of fragments

• FragMask distinguishes among fragments
– if Type=DATA, identifies this fragment

– if Type=SRR, identifies missing fragments

Data

ProtNum

MID

Length

NumFrags Type

FragMask

0 16 31

Mar-6-03 4/598N: Computer Networks 41

Request/Reply (CHAN)

• Guarantees message delivery

• Synchronizes client with server

• Supports at-most-once semantics

• Simple case                        Implicit Acks
Client Server

Request

ACK

Reply

ACK

Client Server
Request 1

Request 2

Reply 2

Reply 1

…

Mar-6-03 4/598N: Computer Networks 42

CHAN Details

• Lost message (request, reply, or ACK)
– set RETRANSMIT timer

– use message id (MID) field to distinguish

• Slow (long running) server
– client periodically sends “are you alive” probe, or

– server periodically sends “I’m alive” notice

• Want to support multiple outstanding calls
– use channel id (CID) field to distinguish

• Machines crash and reboot
– use boot id (BID) field to distinguish



8

Mar-6-03 4/598N: Computer Networks 43

CHAN Header Format

typedef struct {
   u_short  Type;    /* REQ, REP, ACK, PROBE */
   u_short  CID;     /* unique channel id */
   int      MID;     /* unique message id */
   int      BID;     /* unique boot id */
   int      Length;  /* length of message */
   int      ProtNum; /* high-level protocol */
} ChanHdr;

typedef struct {
   u_char    type;         /* CLIENT or SERVER */
   u_char    status;       /* BUSY or IDLE */
   int       retries;      /* number of retries */
   int       timeout;      /* timeout value */
   XkReturn  ret_val;      /* return value */
   Msg       *request;     /* request message */
   Msg       *reply;       /* reply message */
   Semaphore reply_sem;    /* client semaphore */
   int       mid;          /* message id */
   int       bid;          /* boot id */
} ChanState;

Mar-6-03 4/598N: Computer Networks 44

Synchronous vs Asynchronous Protocols

• Asynchronous interface
xPush(Sessn s, Msg *msg)
xPop(Sessn s, Msg *msg, void *hdr)
xDemux(Protl hlp, Sessn s, Msg *msg)

• Synchronous interface
xCall(Sessn s, Msg *req, Msg *rep)
xCallPop(Sessn s, Msg *req, Msg *rep, void *hdr)
xCallDemux(Protl hlp, Sessn s, Msg *req, Msg *rep)

• CHAN is a hybrid protocol
– synchronous from above: xCall
– asynchronous from below: xPop/xDemux

Mar-6-03 4/598N: Computer Networks 45

chanCall(Sessn self, Msg *msg, Msg *rmsg){
   ChanState   *state = (ChanState *)self->state;
   ChanHdr     *hdr;
   char        *buf;

   /* ensure only one transaction per channel */
   if ((state->status != IDLE))
      return XK_FAILURE;
   state->status = BUSY;

   /* save copy of req msg and ptr to rep msg*/
   msgConstructCopy(&state->request, msg);
   state->reply = rmsg;
   /* fill out header fields */
   hdr = state->hdr_template;
   hdr->Length = msgLen(msg);
   if (state->mid == MAX_MID)
      state->mid = 0;
      hdr->MID = ++state->mid;

Mar-6-03 4/598N: Computer Networks 46

   /* attach header to msg and send it */
   buf = msgPush(msg, HDR_LEN);
   chan_hdr_store(hdr, buf, HDR_LEN);
   xPush(xGetDown(self, 0), msg);

   /* schedule first timeout event */
   state->retries = 1;
   state->event = evSchedule(retransmit, self, state->timeout);

   /* wait for the reply msg */
   semWait(&state->reply_sem);

   /* clean up state and return */
   flush_msg(state->request);
   state->status = IDLE;
   return state->ret_val;
}

Mar-6-03 4/598N: Computer Networks 47

retransmit(Event ev, int *arg){
   Sessn        s = (Sessn)arg;
   ChanState    *state = (ChanState *)s->state;
   Msg          tmp;

   /* see if event was cancelled */
   if ( evIsCancelled(ev) ) return;

   /* unblock client if we've retried 4 times */
   if (++state->retries > 4) {
      state->ret_val = XK_FAILURE;
      semSignal(state->rep_sem);
      return;
   }

   /* retransmit request message */
   msgConstructCopy(&tmp, &state->request);
   xPush(xGetDown(s, 0), &tmp);

   /* reschedule event with exponential backoff */
   evDetach(state->event);
   state->timeout = 2*state->timeout;
   state->event = evSchedule(retransmit, s,

state->timeout);
}

Mar-6-03 4/598N: Computer Networks 48

Dispatcher (SELECT)

• Dispatch to appropriate procedure

• Synchronous counterpart to UDP
Caller

SELECT

CHAN

xCall

xCall

xDemuxxPush

Callee

SELECT

CHAN

xCallDemux

xCallDemux

xDemuxxPush

ServerClient

• Address Space for Procedures
– flat: unique id for each possible procedure
– hierarchical: program + procedure number



9

Mar-6-03 4/598N: Computer Networks 49

Example Code

Client side
static XkReturn
selectCall(Sessn self, Msg *req, Msg *rep)
{
   SelectState *state=(SelectState *)self->state;
   char        *buf;

   buf = msgPush(req, HLEN);
   select_hdr_store(state->hdr, buf, HLEN);
   return xCall(xGetDown(self, 0), req, rep);
}

Server side
static XkReturn
selectCallPop(Sessn s, Sessn lls, Msg *req, Msg *rep, void *inHdr)
{
   return xCallDemux(xGetUp(s), s, req, rep);
}

Mar-6-03 4/598N: Computer Networks 50

Simple RPC Stack

BLAST

ETH

IP

SELECT

CHAN

Mar-6-03 4/598N: Computer Networks 51

VCHAN: A Virtual Protocol

static XkReturn
vchanCall(Sessn s, Msg *req, Msg *rep)
{
   Sessn      chan;
   XkReturn   result;
   VchanState *state=(VchanState *)s->state;

   /* wait for an idle channel */
   semWait(&state->available);
   chan = state->stack[--state->tos];

   /* use the channel */
   result = xCall(chan, req, rep);

   /* free the channel */
   state->stack[state->tos++] = chan;
   semSignal(&state->available);
   return result;
}

Mar-6-03 4/598N: Computer Networks 52

SunRPC

• IP implements BLAST-equivalent
– except no selective retransmit

• SunRPC implements CHAN-equivalent
– except not at-most-once

• UDP + SunRPC implement SELECT-equivalent
– UDP dispatches to program (ports bound to programs)

– SunRPC dispatches to procedure within program

IP

ETH

SunRPC

UDP

Mar-6-03 4/598N: Computer Networks 53

SunRPC Header Format

• XID (transaction id) is similar to CHAN’s MID

• Server does not remember last XID it serviced

• Problem if client retransmits request while reply is in
transit

Data

MsgType = CALL

XID

RPCVersion = 2

Program

Version

Procedure

Credentials (variable)

Verifier (variable)

0 31

Data

MsgType = REPLY

XID

Status = ACCEPTED

0 31


