
1

Feb-18-03 4/598N: Computer Networks 1

Reliable Byte-Stream (TCP)

• Outline
– Connection Establishment/Termination

– Sequence number selection

– Connection tear-down

– Round-trip estimation

– Window flow control

– Sliding Window Revisited

– Adaptive Timeout

Slides courtesy:
Ramesh Govindan @ USC
Larry Peterson @ Princeton

Jeffrey A. Six @ Delaware

Feb-18-03 4/598N: Computer Networks 2

End-to-End Protocols

• Underlying best-effort network
– drop messages

– re-orders messages

– delivers duplicate copies of a given message

– limits messages to some finite size

– delivers messages after an arbitrarily long delay

• Common end-to-end services
– guarantee message delivery

– deliver messages in the same order they are sent

– deliver at most one copy of each message

– support arbitrarily large messages

– support synchronization

– allow the receiver to flow control the sender

– support multiple application processes on each host

Feb-18-03 4/598N: Computer Networks 3

Simple Demultiplexor (UDP)

• Unreliable and unordered datagram service

• Adds multiplexing

• No flow control

• Endpoints identified by ports
– servers have well-known ports

– see /etc/services on Unix

• Header format

• Optional checksum
– psuedo header + UDP header + data

SrcPort DstPort

Checksum Length

Data

0 16 31

Feb-18-03 4/598N: Computer Networks 4

TCP Overview

• Connection-oriented

• Byte-stream
– app writes bytes

– TCP sends segments

– app reads bytes

Application process

Write
bytes

TCP
Send buffer

Segment Segment Segment

Transmit segments

Application process

Read
bytes

TCP
Receive buffer

…

… …

• Full duplex
• Flow control: keep sender

from overrunning receiver
• Congestion control: keep

sender from overrunning
network

Feb-18-03 4/598N: Computer Networks 5

Data Link Versus Transport

• Potentially connects many different hosts
– need explicit connection establishment and termination

• Potentially different RTT
– need adaptive timeout mechanism

• Potentially long delay in network
– need to be prepared for arrival of very old packets

• Potentially different capacity at destination
– need to accommodate different node capacity

• Potentially different network capacity
– need to be prepared for network congestion

Feb-18-03 4/598N: Computer Networks 6

Segment Format

Options (variable)

Data

Checksum

SrcPort DstPort

HdrLen 0 Flags

UrgPtr

AdvertisedWindow

SequenceNum

Acknowledgment

0 4 10 16 31

2

Feb-18-03 4/598N: Computer Networks 7

Segment Format (cont)

• Each connection identified with 4-tuple:
– (SrcPort, SrcIPAddr, DsrPort, DstIPAddr)

• Sliding window + flow control
– acknowledgment, SequenceNum, AdvertisedWinow

• Flags
– SYN, FIN, RESET, PUSH, URG, ACK

• Checksum
– pseudo header + TCP header + data

Sender

Data (SequenceNum)

Acknowledgment +
AdvertisedWindow

Receiver

Feb-18-03 4/598N: Computer Networks 8

Connection Establishment and Termination

Active participant
(client)

Passive participant
(server)SYN, SequenceNum = x

SYN + ACK, SequenceNum = y

Acknowledgment = x+1

ACK, Acknowledgment = y + 1

Feb-18-03 4/598N: Computer Networks 9

Sequence Number Selection

• Initial sequence number (ISN) selection
– Why not simply chose 0?

– Must avoid overlap with earlier incarnation

• Requirements for ISN selection
– Must operate correctly

• Without synchronized clocks

• Despite node failures

Feb-18-03 4/598N: Computer Networks 10

ISN and Quiet Time

• Use local clock to select ISN
– Clock wraparound must be greater than max segment

lifetime (MSL)

• Upon startup, cannot assign sequence numbers for
MSL seconds

• Can still have sequence number overlap
– If sequence number space not large enough for high-

bandwidth connections

Feb-18-03 4/598N: Computer Networks 11

Connection Tear-down

• Normal termination
– Allow unilateral close

– Avoid sequence number overlap

• TCP must continue to receive data even after
closing
– Cannot close connection immediately: what if a new

connection restarts and uses same sequence number?

Feb-18-03 4/598N: Computer Networks 12

Tear-down Packet Exchange

Sender Receiver
FIN

FIN-ACK

FIN

FIN-ACK

Data write

Data ack

3

Feb-18-03 4/598N: Computer Networks 13

State Transition Diagram

CLOSED

LISTEN

SYN_RCVD SYN_SENT

ESTABLISHED

CLOSE_WAIT

LAST_ACKCLOSING

TIME_WAIT

FIN_WAIT_2

FIN_WAIT_1

Passive open Close

Send/SYN
SYN/SYN + ACK

SYN + ACK/ACK

SYN/SYN + ACK

ACK

Close/FIN

FIN/ACKClose/FIN

FIN/ACKACK + FIN/ACK
Timeout after two
segment lifetimes

FIN/ACK
ACK

ACK

ACK

Close/FIN

Close

CLOSED

Active open/SYN

Feb-18-03 4/598N: Computer Networks 14

Sliding Window Revisited

• Sending side
– LastByteAcked < =
LastByteSent

– LastByteSent < =
LastByteWritten

– buffer bytes between
LastByteAcked and
LastByteWritten

Sending application

LastByteWritten

TCP

LastByteSentLastByteAcked

Receiving application

LastByteRead

TCP

LastByteRcvdNextByteExpected

• Receiving side
– LastByteRead <
NextByteExpected

– NextByteExpected < =
LastByteRcvd +1

– buffer bytes between
NextByteRead and
LastByteRcvd

Feb-18-03 4/598N: Computer Networks 15

Flow Control

• Fast sender can overrun receiver:
– Packet loss, unnecessary retransmissions

• Possible solutions:
– Sender transmits at pre-negotiated rate

– Sender limited to a window’s worth of unacknowledged data

• Flow control different from congestion control

Feb-18-03 4/598N: Computer Networks 16

Flow Control
• Send buffer size: MaxSendBuffer
• Receive buffer size: MaxRcvBuffer
• Receiving side

– LastByteRcvd - LastByteRead < = MaxRcvBuffer
– AdvertisedWindow = MaxRcvBuffer - (NextByteExpected -

NextByteRead)

• Sending side
– LastByteSent - LastByteAcked < = AdvertisedWindow
– EffectiveWindow = AdvertisedWindow - (LastByteSent -

LastByteAcked)
– LastByteWritten - LastByteAcked < = MaxSendBuffer
– block sender if (LastByteWritten - LastByteAcked) + y >

MaxSenderBuffer

• Always send ACK in response to arriving data segment
• Persist when AdvertisedWindow = 0

Feb-18-03 4/598N: Computer Networks 17

Round-trip Time Estimation

• Wait at least one RTT before retransmitting

• Importance of accurate RTT estimators:
– Low RTT -> unneeded retransmissions

– High RTT -> poor throughput

• RTT estimator must adapt to change in RTT
– But not too fast, or too slow!

Feb-18-03 4/598N: Computer Networks 18

Initial Round-trip Estimator

Round trip times exponentially averaged:
• New RTT = a (old RTT) + (1 - a) (new sample)

• Recommended value for a: 0.8 - 0.9

• Retransmit timer set to b RTT, where b = 2

• Every time timer expires, RTO exponentially backed-off

4

Feb-18-03 4/598N: Computer Networks 19

Retransmission Ambiguity

A B

ACK

Sample
RTT

A B
Original transmission

retransmission
Sample
RTT

Original transmission

retransmission

ACK

Feb-18-03 4/598N: Computer Networks 20

Karn’s Retransmission Timeout Estimator

• Accounts for retransmission ambiguity

• If a segment has been retransmitted:
– Don’t count RTT sample on ACKs for this segment

– Keep backed off time-out for next packet

– Reuse RTT estimate only after one successful
transmission

Feb-18-03 4/598N: Computer Networks 21

Karn/Partridge Algorithm

• Do not sample RTT when retransmitting

• Double timeout after each retransmission

Sender Receiver

Original transmission

ACK

S
am

p
le

R
T

T

Retransmission

Sender Receiver

Original transmission

ACK

S
am

p
le

R
T

T

Retransmission

Feb-18-03 4/598N: Computer Networks 22

Jacobson’s Retransmission Timeout Estimator

• Key observation:
– Using b RTT for timeout doesn’t work

– At high loads round trip variance is high

• Solution:
– If D denotes mean variation

– Timeout = RTT + 4D

Feb-18-03 4/598N: Computer Networks 23

Jacobson/ Karels Algorithm
• New Calculations for average RTT

• Diff = SampleRTT - EstRTT

• EstRTT = EstRTT + (d x Diff)

• Dev = Dev + d(|Diff| - Dev)
– where d is a factor between 0 and 1

• Consider variance when setting timeout value

• TimeOut = m x EstRTT + f x Dev
– where m = 1 and f = 4

• Notes
– algorithm only as good as granularity of clock (500ms on Unix)

– accurate timeout mechanism important to congestion control (later)

