
CSCI 4770/6770 HW 1: Locating Peer Beacons

Assigned: Tuesday, Jan 8
Due: Tuesday, Feb 5, 11:00AM

(LATE SUBMISSIONS WILL NOT BE ACCEPTED)

1 Motivation

Locating computing resources is an important first step in accessing ubiquitous resources. For example,
when you walk into this class, you want to know who/what else is accessible. You can use this information
to communicate with your “friends”, find the closest printer etc. You can also use this information to allow
your “friends” to communicate with you. For ubiquitous computing, location management is part of a larger
problem of authentication, authorization, protocol negotiation, service management etc.

In this project, we will implement a simple scheme for locating other beacons that are currently online.
Beacons are defined as software representations of physical entities. Beacons can represent printers,
scanners, LCD projectors, people, microwave ovens, etc. Depending on the object that a beacon is attached
to, beacons can provide any number of different services. For example, a beacon attached to a printer can
advertise the printers capabilities (postscript/PCL, color/grayscale, 1200 dpi, inkjet etc), accept jobs for
printing and provide status information (printer jam, out of paper, out of ink etc.). A more complex beacon
can make requests to other beacons to accomplish its tasks. For example, the printer beacon can in turn
contact other beacons to convert a powerpoint document to postscript format so that it can be printed. The
printer beacon can also contact a clearinghouse to charge the user for the printing costs.

In general, there are a number of different ways for beacons to identify other beacons. Some popular
techniques are:

1. Central Server: This approach uses a centralized server. Every beacon registers itself with this
server. One would query this central server to search for other beacons. You have to first know where
this central server is located before you can ask it for the beacon locations (boot-strap problem). Some
popular examples utilizing this approach include napster (www.napster.com), AOL Instant messenger
etc.

2. Peer-to-peer: Here the beacons directly locate other beacons without any centralized data structures.
Beacons can utilize multicasting (all beacons listen on different multicast channels) or broadcasting to
identify other beacons. Beacons can broadcast a query asking other beacons to identify themselves
or new beacons can initially broadcast their identity in order to join the community. Gnutella (www.
gnutella.org) utilizes such peer-to-peer techniques.

2 Project Description

There are two components to this project; first you will develop beacons (that are standalone peers) that
listen in on a TCP port and maintain simple key:value tuples. Next, these beacons will maintain information
about other beacons that are currently online and print the results on the terminal. For debugging purposes,
the beacons will continue to print location information such as beacons entering and leaving the system.

1

www.napster.com
www.gnutella.org
www.gnutella.org


2.1 Beacons

The beacons will maintain key:value tuples. We will not worry about how this meta-information is utilized.
The beacons will listen in on a TCP port (of your choice). The beacons will provide the following interface for
services (note that the services are described in a ’C’ like pseudo function call. You are free to implement it
in a fashion that is convenient for you):

• open(passwd) All the requests to a beacon should be preceded by the open function. Beacons need
a way to authenticate the user who is making a particular request. For our project, we assume that
any passwd is always valid. The beacon will return a token that identifies a particular session. Further
requests to this beacon should be accompanied with this token for service. A request without a valid
token should be denied.

• get(token, key) This service will send the value associated with a given key. The key should be
among the keys listed in the list service. Requests for a key that is not available should be denied.

• set(token, key, value) This service will associate the value with the key. Existing values are overwrit-
ten with the new contents.

• list(token) This service will list all the keys that are available at the beacon using earlier set opera-
tions.

• close(token) This service will end the session with this particular beacon.

2.2 Sample Output:

We illustrate a sample interaction with a particular beacon in greenhouse.cs.uga.edu:6003. Your interac-
tions are illustrated in typewriter font .

% telnet greenhouse.cs.uga.edu 6003

OPEN surendar

OK token0

SET token0 PinkFloydWall SongDataWillGoHere

OK SET

LIST token0

OK LIST

PinkFloydWall

GET token0 PinkFloydWall

OK GET

SongDataWillGoHere

CLOSE token0

OK CLOSE

Connection closed by foreign host.

2.3 Location service

For this part, your goal is to identify other beacons which are online at the same time. Beacons identify each
other by exchanging the identification t structure. For this project, you will exchange your name, the Internet
port number and Internet address where you can be reached in the identification t structure. The beacons
print this information without any explicit user interaction. You can refer to the COMPUTER NETWORKS book
by W. Richard Stevens for sample code on using network system calls. The sample code from this book is
available online at http://www.kohala.com/start/unpv12e.html.

2

http://www.kohala.com/start/unpv12e.html


// Structure that is exchanged between clients to help identify the
// client location, how to contact the client and what protocol to speak
typedef struct identification {

// Identify who we are
char name[32]; /* Name of the current client */

// Specify how we can be contacted.
in_addr_t location; /* IP address of the client */
in_port_t port; /* port where the client is listening */

// Specify my credentials
char key[32]; /* My authentication key. Not used for

this project */

// Specify how to talk to us. Not used for this project
unsigned int type; /* whether we talk XML, HTTP, Corba protocols */
unsigned int length; /* Length of protocol specific data in buf */
void *buf; /* Protocol specific buffer */

} identification_t;

For this project, you will use peer-to-peer techniques to locate other peers (and not centralized
approach) . You should be able to locate instances of your own beacon running on different hosts (you
would have to explicitly start a number of beacons). You may also be able to locate beacons developed by
your classmates.

2.4 Sample output:

This is a sample run for how you might print other beacons entering and leaving the system.

1/9/2002 10:30 ‘John Doe’ ENTER gemini.cs.uga.edu:6780

1/9/2002 10:35 ‘John Doe’ LEAVE gemini.cs.uga.edu:6780

1/9/2002 10:40 ‘Jane Doe’ ENTER greenhouse.cs.uga.edu:6003

3 Submission

Please submit your project, along with a succinct report called REPORT.txt (plain text is fine) describing
your approach, the merits of your approach and compilation instructions. You will turn in your complete
project as a single tar file. On gemini, please use /home/profs/surendar/bin/turnin UBICOMP
HWP1 <your tar file> to submit your assignment. You can submit your assignment multiple times. I
will only use the latest submission. To see the files that you had submitted, try turnin UBICOMP HWP1 .
Remember, I will randomly choose students who will be asked to explain their approach in person .

Evaluate your implementation on the following issues in the REPORT.txt:

1. interoperability: How does your beacon recognize your friend in a different host/operating system.
For example, if you are working in gemini [Sun Sparc machine running Solaris], can you identify your
friend in the dorm using a Pentium III running Linux?

2. scalability: If your beacon system becomes wildly popular (ala napster), can your system handle
tens of millions of beacons?

3. consistency: How quickly do beacons realize when a beacon crashes so that the display that you
get accurately reflects the beacons that are currently online?

3


	1 Motivation
	2 Project Description
	2.1 Beacons
	2.2 Location service

	3 Sample output:
	4 Submission

