Outline for today

 Oceanstore: An architecture for Global-Scale Persistent Storage – University of California, Berkeley. ASPLOS 2000

 Feasibility of a Serverless Distributed File System deployed on an Existing set of Desktop PCs – Microsoft research. ACM SIGMETRICS 2000

Persistent store

E.g. files (traditional operating systems), persistent objects (in a object based system)

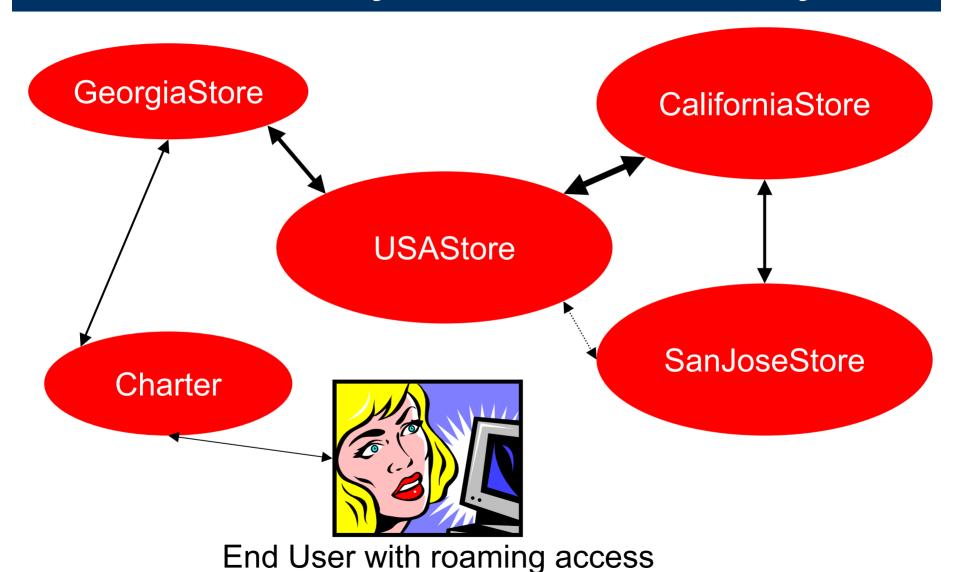
- Applications operate on objects in persistent store
 - Powerpoint operates on a persistent .ppt file, mutating its contents
 - Palm calendar operates on my calendar which is replicated in myYahoo, Palm Desktop and the Pilot itself
- Storage is cheap but maintenance is not
 - ~ 4 \$/GB

Global Persistent Store

 Persistent store is fundamental for Ubiquitous Computing because it allows "devices" to operate transparently, consistently and reliably on data.

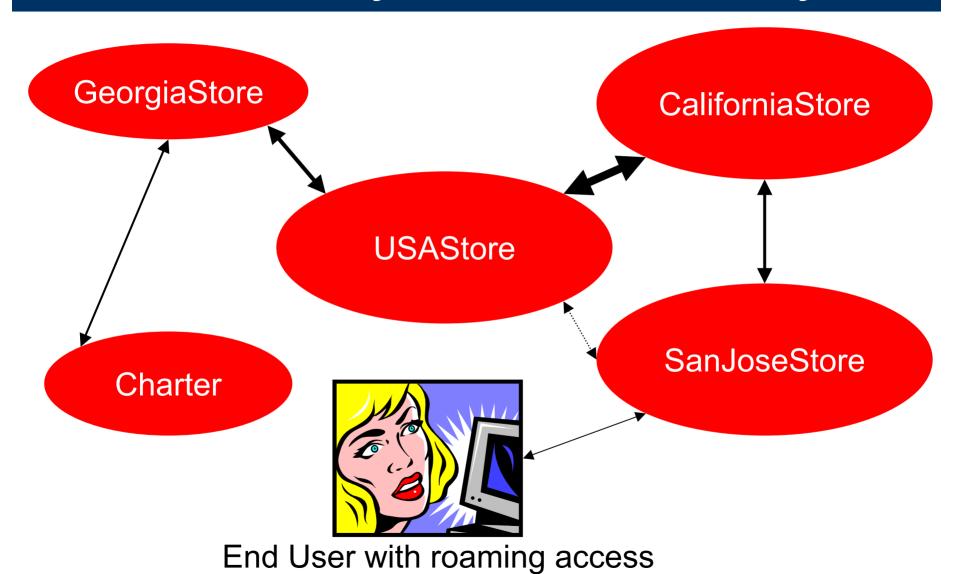
- Transparent: Permits behavior to be independent of the device themselves
- Consistently: Allows users to safely access the same information from many different devices simultaneously.
- Reliably: Devices can be rebooted or replaced without losing vital configuration information

Persistent store on a wide-scale


 10 billion users, 10,000 files per user = 100 trillion files!!

Information:

- should be separated from location. To achieve uniform and highly-available access to information, servers must be geographically distributed, but exploit caching close to clients for performance
- must be secure
- must be durable
- must be consistent



Oceanstore system model: Data Utility

Oceanstore system model: Data Utility

Oceanstore Goals

- Untrusted infrastructure (utility model telephone)
 - Only clients can be trusted
 - Servers can crash, or leak information to third parties
 - Most of the servers are working correctly most of the time
 - Class of trusted servers that can carry out protocols on the clients behalf (financially liable for integrity of data)
- Nomadic Data Access
 - Data can be cached anywhere, anytime (promiscuous caching)
 - Continuous introspective monitoring to locate data close to the user

Oceanstore Persistent Object

- Named by a globally unique id (GUID)
- Such GUIDs are hard to use. If you are expecting 10 trillion files, your GUID will have to be a long (say 128 bit) ID rather than a simple name
 - passwd vs 12agfs237dfdfhj459uxzozfk459ldfnhgga
- self-certifying names
 - secureHash(/id=surendar,ou=uga,key=<SecureKey>/etc/passwd)
 uniqueId
 - 2. Map uniqueId->GUID
 - Users would use symbolic links for easy usage
 - /etc/passwd -> uniqueId

SecureHash

- Pros:
 - The self-certifying name specifies my access rights
- Cons:
 - If I lose the key, the data is lost
 - Key management issues
 - Keys can be upgraded
 - Keys can be revoked
 - How do we share data?

Access Control

- All read-shared-users share an encryption key
 - Revocation:
 - Data should be deleted from all replicas
 - Data should be re-encrypted
 - New keys should be distributed
 - Clients can still access old data till it is deleted in all replicas
- All writes are signed
 - Validity checked by Access Control Lists (ACLs)
 - If A says trust B, B says trust C, C says trust D,
 what can you infer about A? D

Oceanstore Persistent Object

- Objects are replicated on multiple servers.
 Replicated objects are not tied to particular servers i.e. floating replicas
- Replicas located by a probabilistic algorithm first before using a deterministic algorithm
- Data can be active or archival.
 - Archival data is read-only and spread over multiple servers – deep archival storage

Updates

- Objects are modified through updates (data is never overwritten) i.e. versioning system
- Application level conflict resolution
- Updates consist of a predicate and value pair. If a predicate evaluates to true, the corresponding value is applied.
 - 1. <room 453 free?>, <reserve room>
 - 2. <room 527 free?>, <reserve room>
 - 3. <else> <go to Jittery Joes>
- This is similar to Bayou which we will explore later in the semester

Introspection

 Oceanstore uses introspection to monitor system behavior

Use this information for cluster recognition

Use this information for replica management

