Outline

Involved in bayou
Epidemic algorithms

- Randomized algorithms for maintaining consistency for updates to replicas

- Precursor to Bayou and other systems

- Algorithms modeled after epidemics (diseases are spread by infecting the next victim)

- One algorithm implemented in Xerox clearing house system
Xerox Clearinghouse servers

• The Clearinghouse is a decentralized set of processes that provides an efficient but not terribly robust method for a distributed name service (late ’70s)

• They used mail and anti-entropy as the mechanism to distribute updates between replicas

• Within domain - Anti-entropy. On failure direct mail

• In related work they mention this DARPA domain system (we call it DNS now)
Epidemic terminology

• Site holding an update it is willing to share “infective”

• Site that has not received an update “susceptible”

• Site that has received an update but not willing to share it “removed”

 – Anti-entropy: sites are always susceptible or infective
Considerations

• Time required for an update to propagate to all sites

• Network traffic generated in propagating a single update. Ideally traffic is proportional to the number of nodes, but some algorithms create much more traffic
Direct Mail

• Each update is immediately sent from its entry site to all other sites.

• When a node receives an update, it checks the timestamp of update with local timestamp. Newer updates win
 – Timely – updates are sent immediately
 – Efficiency – reasonable. Number of messages proportional to number of updates and average hop count

 – Problems:
 • Nodes do not know about all replicas
 • Mail is not reliable delivery mechanism
Anti-entropy

• Entropy - amount of entropy is a measure of the disorder, or randomness, of a system. (from thermodynamics – Encyclopedia Britannica)

• Updates available in few sites – high entropy. Anti-entropy tries to restore order back into the system

• Every site regularly chooses another side at random and exchanges database contents with it and resolves any different between the two
Anti-entropy

• Differences are resolved using:
 – Push: infective -> susceptible
 – Pull: susceptible -> infective
 – Push-Pull: depending on the time stamps, updates are either pushed or pulled

• Common case: Pull or push-pull preferred
• Reliable, but high overhead because have to “diff” the databases
Rumor mongering

• Sites are initially “ignorant”
• When site receives new information, it becomes a “hot rumor”
 – Periodically chooses another site at random and ensures that the other site has seen the update
 – When a site has tried to share a hot rumor with too many sites that have already seen it, the site stops treating the rumor as hot and retains the update without propagating it further
 – $1/k$ probability : $k=1$, 20% and $k=2$, 6% will miss updates
 – There is a chance that an update will not reach all sites (backup anti-entropy process)
Complex epidemic variations

• Blind – 1/k probability of losing interest regardless if recipient is susceptible
• Feedback – 1/k probability only if recipient is infective
• Counter – lose interest after k unnecessary contacts
• Coin – k cycles regardless if susceptible
• Push and Pull
• Minimization – counters on both ends
• Connection limit – limits the number of connections
• Hunting – if a connection is rejected, choosing site can hunt for alternate sites
Deletion and death certificates

• When we delete an item, we insert a death certificate so that the data is deleted in other replicas (rather than filled with older data values)

• How do we make sure that these death certificates are deleted?
 – Make sure that all nodes have seen the death certificates
 • What is a node crashes in the middle. Have to make sure that node deletions propagate before death certificates
 – Fixed time interval

• Dormant Death Certificates

• Anti-entropy with dormant death certificates
 – Activation timestamp

• Rumor mongering with dormant death certificates
Spatial distribution and anti-entropy

- The critical link can become the hot-spot for anti-entropy and rumor mongering algorithms