Outline

- Replication in the Harp File System, Barbara Liskov, Sanjay Ghemawat, Robert Gruber, Paul Johnson, Liuba Shrira, Michael Williams, MIT
 - Barbara Liskov first woman to receive Ph.D. in Computer Science in the US (1968, Stanford). Faculty at MIT since 1972

HARP – Highly Available Reliable Persistent

- Provides highly available, reliable storage for files
- Guarantees atomic file operations in spite of concurrency and failure

- Primary copy replication (Eager master)
 - Master server authoritative
 - Replicas backup servers
 - Updates are sent to "enough" replicas to guarantee failsafe behavior
- Log structured updates

HARP - Operating Environment

- Bunch of nodes connected by a network
- Fail-stop Nodes fail by crashing (they don't limp along)
- Network may lose, duplicate messages, deliver messages out of order (but not corrupt messages)
- Loosely synchronized clocks
- Each server is equipped with a small UPS

Replication Method

- Primary-copy method
- One node acts as the primary clients request from this primary
- Primary contacts backups
- Two-phase modifications
 - Phase 1:
 - Primary informs the backups about modification
 - Backups acknowledge receipt of modification
 - Primary commits and returns
 - Phase 2:
 - Primary informs backups of commit in background

Failover protocol

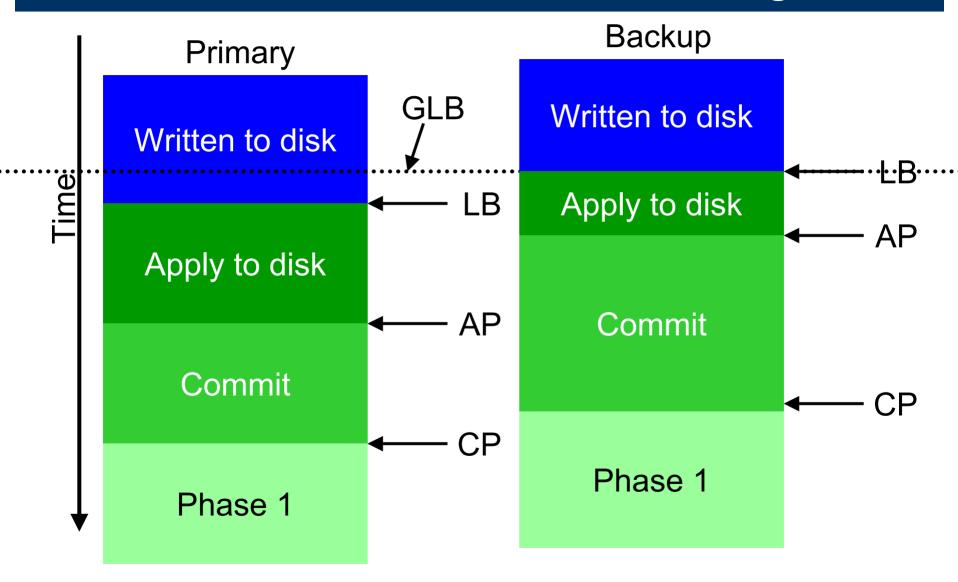
- Failover protocol view change
- View change
 - failed node removed from service
 - Recovered node is put back into service
- Primary of new view maybe different from old view

- Clients requests sent to primary of new view
- 2n+1 servers for tolerating n failures

Failover – Contd.

- Store n+1 copies
- N nodes witness view change to make sure only one view is selected

- Each replicate group manages one or more file systems
 - 1 designated primary
 - N designated backups
 - N designated witnesses



Normal case processing

- Primary maintains a log in volatile memory in which it records modification operations
- Some records are phase 1 while others are for operations that have committed
- Primary maintains a commit point (CP); index of the latest committed operation
- An apply process applies committed operations to the file system (AP) asynchronously
- Lower Bound pointer records operations that were written to disk
- Global LB is used to cleanup the logs

Volatile state of the modification logs

Normal case operations

- Operations that do not modify file system state (get file attributes – e.g. ls) entirely in primary. Performed on committed writes.
- Non-modifications can lead to problems in network partitions. Hence they use loosely synchronized clocks and restrict view change after a interval δ since the last message

View change

- Requirements
 - Correctness: Operations must appear to be executed in commit order
 - E.g. create file, list file, delete file expects a certain ordering
 - Reliability: Effects of committed operations must survive single failures and simultaneous failures
 - Availability:
 - Timelines: Fail-over must be done in a timely manner
- Use event records to avoid problems with multiple applications of event records

Discussion

