Recap.

- **Ubiquitous Computing Vision**
 - *The Computer for the Twenty-First Century*, Mark Weiser
 - *The Coming Age Of Calm Technology*, Mark Weiser and John Seely Brown
 - *People, Places, Things: Web Presence for the Real World*
 - *Next Century Challenges: Data-Centric Networking for Invisible Computing*. Mike Esler, Jeffrey Hightower, Tom Anderson, and Gaetano Borriello
 - *Pervasive Computing: Vision and Challenges*, M. Satyanarayanan
Recap

• Distributed Systems Architecture
 – Intro. to Distributed system architecture (Domain Name Service (DNS), Gnutella, DNS round robin etc.)
 – Oceanstore: An Extremely Wide-Area Storage System
 David Bindel, Yan Chen, Patrick Eaton, Dennis Geels, Ramakrishna Gummadi, Sean Rhea, Haim Weatherspoon, Westley Weimer, Christopher Wells, Ben Zhao, and John Kubiatowicz
 – Feasibility of a Serverless Distributed File System Deployed on an Existing Set of Desktop PCs
 William J. Bolosky, John R. Douceur, David Ely, and Marvin Theimer
Recap

• Location and Naming management
 – *Active Names: Flexible Location and Transport of Wide-Area Resources* Amin Vahdat, Michael Dahlin, Thomas Anderson, and Amit Aggarwal
Outline

• As systems grow, need to scale up
Scale Up

- You can scale up by buying a bigger machine
• You can scale up by partitioning the machines (e.g. service users in east coast from Atlanta and west coast from L.A.)
• You can replicate data
Serializability – Intro.

- What is the value of X in node 3?
- Causal ordering (Update x when you hear from Node 1 or Node 2)
Serializability – Intro.

- What is the value of X in node 3?
- Causal ordering (Update x when you hear from Node 1 or Node 2)
Goals of replication

• Availability and scaleability
 Provide high availability and scaleability through replication

• Mobility
 Allow mobile nodes to read and update the database while disconnected from the network

• Serializability
 Provide single-copy serializable transaction execution

• Convergence
 Provide convergence to avoid system delusion
Eager Replication

- All replicas synchronized to the same value immediately
Eager Replication

- All replicas synchronized to the same value
- Lower update performance and response time
Lazy Replication

- One replica is updated by the transaction
- Replicas synchronize asynchronously
- Multiple versions of data
Single node Transaction

Checking –1000
Savings +500
CD +500
Commit

• No conflicts
Eager Transaction

Checking –1000
Savings +500
CD +500
Commit

Checking –1000
Savings +500
CD +500
Commit

Checking –1000
Savings +500
CD +500
Commit

N nodes – N times as much work
Lazy Transaction

- N nodes – N times as much work
- N transactions
ConcURRENCY anomaly in Lazy Replication

- R` - Which version of data should it see?
- If committed transaction is ‘wrong’, conflict
- Conflicts have to be reconciled
• When the nodes divulge hopelessly
• System delusion – database is inconsistent and no obvious way to repair it
Regulate replica updates

- Group: Any node with a copy can update item
 - Update anywhere

- Master: Only a master can update the primary copy. All replicas are read-only. All update requests are sent to the master
Replication strategies

<table>
<thead>
<tr>
<th>Propagation Vs. Ownership</th>
<th>Lazy</th>
<th>Eager</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group</td>
<td>N transactions, N object owners</td>
<td>1 transaction, N object owners</td>
</tr>
<tr>
<td>Master</td>
<td>N transactions, 1 object owner</td>
<td>1 transaction, 1 object owner</td>
</tr>
<tr>
<td>Two tier</td>
<td>N+1 transactions, 1 object owner, Tentative locate update, eager base update</td>
<td></td>
</tr>
</tbody>
</table>