Outline

1. The Anatomy of a Context-Aware Application – Andy Harter, Andy Hopper, Pete Steggles, Andy Ward and Paul Webster. AT&T Labs, Cambridge, UK (cont)

Bat Unit

- Radio transceiver, ultrasonic transducer and control logic
- Each bat has a GUID
- Use the radio, ultrasonic transducer and the speed of sound in air (estimated from ambient temperature) to estimate location
- Use multiple receivers to get 3D location using multilateration
- Reflections of ultrasonic waves statistical outlier elimination

Bat Unit (cont.)

- It takes 20 ms between bat readings = 50 timeslots per base station per second
- Location can be used to measure orientation
 - Attach many bats to the same object. Use the measurements to infer the orientation
- Base station can provide Location Quality-of-service to allocate time slots to bats based on the expected update frequency
 - Bats carried by people few times a second
 - Bats attached to workstation once every few minutes

Bat Unit (cont.)

- Bats perform handover when moving from one base station to another (similar to the cellular networks)
- Hand off decisions can also be made based on the Bat location

- Battery consumption is low, power consumed depends on the update frequency and power state
- Bat is good enough to be used as a 3D mouse

Modeling the environment

- Detailed model describing entities in the real world and their possible interactions
- Use CORBA and databases to implement persistent distributed objects
- Three classes of resource monitors:
 - Machine activity e.g. keyboard activity
 - Machine resource e.g. CPU usage, memory usage
 - Network point-to-point bandwidth and latency

Client level event filters

Update Frequency

 The frequency at which items are monitored is based on how quickly the item tends to change

Relevancy

 If a value has not changed significantly, it is not sent. This value depends on the data being monitored

Caching

Caching improves performance at the cost of consistency

API

- Absolute and relative spatial facts
 - "Person is at (x,y,z) facing in direction δ " .vs. "Person is standing in front of the monitor"
 - Geometric containment is used for relative spatial facts

Scalability

With many devices, containment is complex

 They use containment tree indexing system (a quadtree based approach)

Implementation

- BAT teleportation system
 - With their earlier active badge based teleportation system, they only knew that a user was in the room and so they had to cycle between multiple displays in a room
 - If a particular display was being use, they would still cycle that display because they did not monitor machines
 - If a machine is dead, their system would still wait because they did not monitor machines
 - With the BAT system, they have more accurate location information
 - Event driven programming style

Zones and Buttons

- Action zone triggers teleportation
- Within maintain zone, teleported desktops are maintained

