
CSCI 4900/6900 HW 3: Distributed Search

Assigned: Tuesday, Feb 6
Due: Tuesday, Feb 20, 11:00AM (LATE SUBMISSIONS NOT ACCEPTED)

1 Motivation

In the last two home work projects, we located other beacons that are currently online and accessible. We
also implemented a simple beacon service that provides a file service. The next step is to be able to access
files that are available in beacons that are not directly known to the current beacon. First, if you had used
a central server based approach for Home Work 1, you will need to extend your beacons to be able to
communicate with upto 2 different central servers. (If you had implemented your Home Work 1 using a
peer-to-peer approach, then no change is required to add two servers).

1
2

6 4

3

S1 S2

5

Figure 1: Beacons that can communicate with multiple beacond servers

A two server scenario is illustrated in Figure 1. In this scenario, beacons 1 and 6 communicate exclu-
sively with beacond server S1, beacons 3 and 4 communicate exclusively with beacond server S2, while
beacons 2 and 5 can communicate with both beacond servers S1 and S2. Using the modified central server
based approach, beacon 1 knows that beacons 1, 2, 6 and 5 are online. However, beacon 2 knows that
beacons 1, 6, 5, 3 and 4 are online by communicating with beacond servers S1 and S2. In this project, we
will extend Home Work project 2 to let beacon 1 access files serviced by beacon 4 (even though beacon 1
does not directly know that beacon 4 is online). This extended serving mechanisms allows the beacons to
search for services, even while the network is partitioned (as long as there is some path from the source to
the destination).

1



2 Description

The goal of this project is to extend the beacon service to access files in beacons that are not directly
accessible to them. For this project, the beacons will be extended to register with upto two different cen-
tral servers (no change to add two servers is required for peer-to-peer implementations). We extend the
services provided by Home Work 2 as follows:

• searchget(token, serviceFile, hopCount) If the requested file serviceFile is available in the beacon,
the contents of the file are sent back. If the file serviceFile is not available, a recursive searchget is
invoked by this beacon (on behalf of the requestor) on all the beacons that it knows of. Every such
forwarding decrements the hopCount. Once the hopCount reaches 0 without successfully finding the
file, the system returns an error message.

For example, in the scenario illustrated in Figure 1, suppose beacon 1 is searching for file hw1.tar
available in beacon 4 (say). Beacon 1 will issue a searchget(token, ’hw1.tar’, 5) to beacons 2, 5 and 6.
Each one of them in turn, request hw1.tar from their neighbors till the file is located in beacon 4. Note that
your implementation might return multiple copies of the same file. It might also return an FileNotFound error,
even though there is a path available from the source to the destination. For example, suppose beacon 1
requests searchget(token, ’hw1.tar’, 3), the request might get forwarded to beacons 2, 5 and 6 to return an
FileNotFound error message (hopCount becomes 0), even though a route through beacons 2, 4 is feasible.

As usual, you are free to choose the exact technique to provide the service described above. You could
use a traditional RPC style implementation or a multi-way RPC implementation (as discussed in the Active
Names paper).

3 Submission

Please submit your project, along with a succinct report called REPORT.txt (plain text is fine) describing
your approach, the merits of your approach and compilation instructions. You will turn in your complete
project as a single tar file. On gemini, please use /home/profs/surendar/bin/turnin hw3 <your
tar file> to submit your assignment. You can submit your assignment multiple times. I will only use the
latest submission. To see the files that you had submitted, try turnin hw3 . Remember, I will randomly
choose students who will be asked to explain their approach in person . Issues that you might consider
while developing and evaluating your system are:

1. robustness: How reliable is your system against failures? Does your beacon recognize forwarding
loops? (wherein the requests are forwarded around in a loop without making progress towards the
destination)

2. scalability: If your beacon suddenly becomes popular because of the files that your provide, how
much load can you tolerate before your system crashes? Does your service degrade gracefully? Are
you immune to denial-of-service attacks? (wherein, beacons repeatedly open connections to you to
prevent you from servicing other, legitimate users)

2


	1 Motivation
	2 Description
	3 Submission

