CSCI 4900/6900 HW 1: Locating Beacons

Assigned: Tuesday, Jan 9
Due: Tuesday, Jan 23, 11:00AM (LATE SUBMISSIONS NOT ACCEPTED)

1 Motivation

Locating computing resources is an important first step in accessing ubiquitous resources. For example,
when you walk into this class, you want to know who/what else is accessible. You can use this information
to communicate with your “friends”, find the closest printer etc. You can also use this information to allow
your “friends” to communicate with you. For ubiquitous computing, location management is part of a larger
problem of authentication/authorization/protocol negotiation etc. In this project, we will implement a simple
scheme for locating other beacons.

2 Description

The goal of this project is locate beacons that are currently online. Beacons are defined as software
representations of physical entities. Beacons can represent printers, scanners, LCD projectors, people,
microwave ovens, etc. In this project, the beacons will represent you. Your goal is to identify others who
are online at the same time. Beacons identify each other by exchanging the identification_t structure. For
this project, you will exchange your name, the Internet port number and Internet address where you can
be reached in the identification_t structure. You can refer to the Computer Network books by W. Richard
Stevens [1] for sample code on using network system calls. The sample code from this book is available
online at http://www.kohala.com/start/unpv12e.html.

/I Structure that is exchanged between clients to help identify the
/I client location, how to contact the client and what protocol to speak

typedef struct identification {
/I ldentify who we are
char name[32]; /* Name of the current client */

/I Specify how we can be contacted.
in_addr_t location; [* IP address of the client */
in_port t port; /* port where the client is listening */

/I Specify my credentials
char key[32]; /* My authentication key. Unused for
this project */

/I Specify how to talk to us. Unused for this project

unsigned int type; /* whether we talk XML, HTTP, Corba protocols */
unsigned int length; [* Length of protocol specific data

that follows in buf */
void *buf; /* Protocol specific buffer */

} identification_t;


http://www.kohala.com/start/unpv12e.html

In general, there are a number of different ways for beacons to identify other beacons. Some popular
techniques are:

1. Central Server: This approach uses a centralized server. Every beacon registers itself with this
server. One would query this central server to search for other beacons. You have to first know where
this central server is located before you can ask it for the beacon locations (boot-strap problem). Some
popular examples utilizing this approach include napster (www.napster.com), AOL Instant messenger
etc.

2. Peer-to-peer: Here the beacons directly locate other beacons without any centralized data structures.
Beacons can utilize multicasting (all beacons listen on different multicast channels) or broadcasting to
identify other beacons. Beacons can broadcast a query asking other beacons to identify themselves
or new beacons can initially broadcast their identity in order to join the community. Gnutella (Wwww.
gnutella.org) utilizes such peer-to-peer techniques.

For this project, you are free to choose any of the techniques described above or a technique of your
own. Depending on the technique that you use, you should be able to locate instances of your own beacon
running on different hosts (you would have to explicitly start a number of beacons). You may also be able
to locate beacons developed by your classmates.

3 Submission

Please submit your project, along with a succint report called REPORT.txt (plain text is fine) describing
your approach, the merits of your approach and compilation instructions. You will turn in your complete
project as a single tar file. On gemini, please use /home/profs/surendar/bin/turnin hwl <your

tar file> to submit your assignment. You can submit your assignment multiple times. | will only use the
latest submission. To see the files that you had submitted, try turnin hwl . Remember, | will randomly
choose students who will be asked to explain their approach in person . Issues that you might consider
while developing and evaluating your system are:

1. interoperability: How does your beacon recognize your friend in a different host/operating system.
For example, if you are working in gemini [Sun Sparc machine running Solaris], can you identify your
friend in the dorm using a Pentium Il running Linux?

2. scalability: If your beacon system becomes wildly popular (ala napster), can your system handle
tens of millions of beacons?

3. consistency: How quickly do beacons realize when a beacon crashes so that the display that you
get accurately reflects the beacons that are currently online?

4 Sample output:

% beacon

1/9/2001 10:30 ‘John Doe’ gemini.cs.uga.edu:6780
1/9/2001 10:35 ‘John Doe’' LEFT

1/9/2001 10:40 ‘Jane Doe’ greenhouse.cs.uga.edu:6003

References

[1] W. Richard Stevens. UNIX Network Programming: Networking APIs: Sockets and XTI, volume 1 of
ISBN 0-13-490012-X. Prentice Hall, 2 edition, 1998. Sample code from this book is available at http:
[Iwww.kohala.com/start/unpvl12e.html.


www.napster.com
www.gnutella.org
www.gnutella.org
http://www.kohala.com/start/unpv12e.html
http://www.kohala.com/start/unpv12e.html

	1 Motivation
	2 Description
	3 Submission
	4 Sample output:

