
Measuring Computer Systems:
How to Measure Performance

Margo Seltzer, Aaron Brown
Harvard University

Division of Engineering and Applied Sciences
{margo, abrown}@eecs.harvard.edu

EV IR

TA S

Measuring Computer Systems

 Abstract
“Benchmarks shape a field (for better or worse); they are how
we determine the value of change.” (David Patterson, 1994).

If benchmarks shape a field, then computer science is in poor condition. Our field is
characterized by a few excellent benchmarks, and a large number of poorly
conceived and executed measurements. Many benchmarks are created with the sole
purpose of making one system look better than competing systems. Other studies
use good, fair benchmarks, but offer no conclusions, draw completely unsupportable
conclusions, or neglect to present the data necessary to support the conclusions
drawn. Another common approach is to take good benchmarks and use them in
inappropriate ways. The prevalence of bad benchmarking practice is
understandable: careful, thorough measurement is both extremely difficult and
enormously time consuming.
In this talk, we will examine current practice in computer system measurement, citing
surprisingly good and embarrassingly bad real-world examples. We will use these
examples to illustrate the common pitfalls that await an eager system evaluator. We
will examine one study in depth, highlighting the strengths and weaknesses of its
methodological approach. Based on the discussion of existing practice and the
sample case study, we will offer some benchmarking tips and guidelines.

Measuring Computer Systems

Outline
• Why is measurement important?
• So, what’s the problem?
• Some basic rules for measurement.
• A measurement case study.
• Lessons learned.

Measuring Computer Systems

Why Benchmark?

“Benchmarks shape a field (for
better or worse); they are how
we determine the value of
change.”

—David Patterson, 1994

Measuring Computer Systems

Benchmarks Shape a Field
• Database and TP Community

• Debit/Credit
• TP1
• TPC/A-B
• TPC/C
• 001
• TPC/D

• Architecture Community
• Linpack
• SPEC

Measuring Computer Systems

Shaping a Field (2)
• File System Community

• Trace-based analysis of the 4.2 file system
• Andrew File System Benchmark
• Bonnie
• LADDIS

• PC Community
• Byte benchmarks
• PC Magazine Winstone and WinBench

• Spelling Community
• Whetstone
• Dhrystone
• NHFSstone

Measuring Computer Systems

The Shape may be Incorrect
• Bonnie: Ignores the software.
• Laddis: Ignores how file systems change

over time.
• SPEC: Ignores the operating system.
• TPC/X: Ignores everything that’s not

transaction processing.
• Winstone: Ignores the user.

Measuring Computer Systems

Why You Care
• System designers

• How does my system perform?
• Are these features worthwhile?
• Did my changes make a difference?

• Application designers
• Did I make my product slower?
• How do I stack up to the competition?

• System administrators
• What system shall I recommend?
• How shall I configure this machine?
• Why is my machine slow?

Measuring Computer Systems

Why You Care (2)
• Customers

• What system shall I buy?
• What software shall I buy?

Measuring Computer Systems

Common Measurement
Problems

• Measuring the wrong thing.
• Drawing inappropriate conclusions.
• Using bad statistics.
• Ignoring system interaction.
• Ignoring timing granularity.

For each of these categories, we will present examples from the
literature.

Measuring Computer Systems

More Problems
• Comparing apples to oranges.
• Comparing end-to-end measurements

with the sum of parts.
• Using the wrong metrics.
• Ignoring how the system optimizes.
• Mistakes.

Measuring Computer Systems

Problems Exist in Other
Disciplines

• Conclusions unsupported by data.
Statement: Modern Physics has proved the existence of God.
Explanation: In “Quantum Leap” (September/October 1989),
physicist David Bohm confirmed the parallels between traditional
views of spirituality and divinity and the latest theories being
examined in modern physics.
Statement: A tender embrace is more fulfilling than sexual
intercourse.
In “The New Eroticism” (May/June 1993), Brenda Peterson
reported that when 100,000 women were asked the question:
“Would you be content to be held close and treated tenderly and
forget about ‘the act’?”, 72 percent said yes, they would be
content to be simply held. Remarkably, 40 percent of the
respondents were under 40 years old.

From New Age Journal

Measuring Computer Systems

What’s so Hard?
• Systems are complex, and interactions in

systems are even more complex.
• Most systems are undocumented (no

source code).
• Each system is different and has

differing tools or implementations.
• Every user wants something different

(e.g., OS researcher versus an end-user).
• Obtaining reproducible, statistically

significant numbers is difficult.

Measuring Computer Systems

More Problems
• Some operations are far faster than the

timer resolution, and repeating
measurements introduces other factors
(e.g., warming of the cache).

• Systems are non-deterministic.
• Benchmarks do not accurately reflect

any particular workload.
• Without complete detailed knowledge of

both HW and SW, it is nearly impossible
to explain exactly what is happening.

Measuring Computer Systems

Case Study
• Deceptively simple project:

• Start with a good benchmark (lmbench).
• Select a single operating system (NetBSD).
• Select a single processor family (Intel).
• Goal: Understand (and quantify) how operating system

primitives have scaled with architectural evolution.
• PC Magazine does similar things all the

time.

Measuring Computer Systems

Good Benchmarking
• Control variables.

• Same operating system.
• Identical benchmarks.
• Identical disk, executables, file system, etc.

• Vary the hardware.
• Four processor generations (386–Pentium Pro).
• Five memory systems.

• Goal: explain each result in terms of its
hardware dependencies.

Measuring Computer Systems

Test Systems

1985 1989 1993 1995

386 486 Pentium Pentium
Pro

Measuring Computer Systems

Evolution: 386–486

386
Instructions

• 80386: 32-bit core
• max 33 MHz external bus
• non-pipelined, no on-chip

caches

486
$L1

• 80486: 32-bit core
• max 33 MHz, 32-bit

external bus
• pipelined, 8K L1 cache

on-chip

Measuring Computer Systems

Evolution: 486–Pentium

486
$L1

• 80486: 32-bit core
• max 33 MHz, 32-bit

external bus
• pipelined, 8K L1 cache

on-chip

Pentium

$L1
• Pentium: 32-bit core
• max 66 MHz, 64-bit

external bus
• dual-issue superscalar

pipelined

Measuring Computer Systems

Evolution: Pentium–Pro

Pentium

$L1
• Pentium: 32-bit core
• max 66 MHz, 64-bit

external bus
• dual-issue superscalar

pipelined

Pentium

$L1
Pro

$L2 µOp
Generator

• Pentium Pro: 32-bit core
• max 66 MHz, 64-bit external

bus
• out-of-order RISC-like core

with 3 micro-op pipelines
• 16K L1 cache on-chip
• 256K or 512K L2 cache in the

Measuring Computer Systems

Challenges
• Mapping the benchmarks into reality.

• What aspects of the system hardware and/or software
were being measured.

• Understanding the results.
• Why was file re-read so fast?
• Why did read/write bandwidths differ?

• Understanding the accuracy of the timer.
• What unit of time could we report?

• Measurement methodology.
• When were averages calculated?
• When was the reported result the minimum time

measured?

Measuring Computer Systems

More Challenges
• Modifying things and keeping them

portable.
• Drawing high-level, useful observations

out of low-level benchmarks.
• Distinguishing between problems in the

benchmark, odd hardware behavior, and
differing assumptions concerning what
the benchmark was measuring.

Measuring Computer Systems

Identifying Problems
• How we figured out what was going on.

• Source code analysis (high-level and in assembler).
• Instrumentation with the Pentium counters.
• Kernel profiling.
• Code tweaking to isolate suspect behaviors.

• Areas where we found problems.
• Timing methodology.
• Statistical methodology.
• Data collection methodology.
• Reporting methodology.

Measuring Computer Systems

Fixing Problems
• Timing.

• Internal, dynamically-sized loops.
• Support hardware counters/timers where available.

• Statistics.
• Apply consistent policy (discard outliers, average rest).

• Data collection.
• Standardize on array-index-style memory references.
• Revamp overhead calculations for consistency.
• Allow increased parameterization.

• Reporting.
• Preserve all data; allow user to specify analysis policy.

Measuring Computer Systems

hBench:OS
http://www.eecs.harvard.edu/hbench

• Still warm cache results.
• Reproducible results (stability).
• Some things still unexplained.
• We understand the limits of what we can

explain with these benchmarks and what
we cannot.

• Does not directly explain application performance.
• Micro-benchmark nature makes it difficult to draw

useful comparisons between different OS/hardware
combinations.

Measuring Computer Systems

Explaining Results
• Some phenomena are difficult to explain.

• Architecture-specific counters help, but introduce
portability problems.

• Difficult to verify hypotheses.
• Architecture manuals are never as complete as one

would like.
• Example:

• Pentium-Pro demonstrates 3x performance differential
between memory read and write performance.

Measuring Computer Systems

Rules for Good Measurement:
Consumer Perspective

• Know what you are trying to understand.
• Why are you benchmarking?
• What are you trying to learn?

• Understand the limitations of your tools/
benchmarks.

• What timing mechanism is being used?
• How accurate is it?

• Test from a consistent state.
• Single-user/multi-user, pick one.
• Freshly booted.
• Network attached/unattached, pick one.

Measuring Computer Systems

Consumer Perspective (2)
• Find the causes of your results.

• Pay particular attention to the anomalies.
• Make sure they are real anomalies, not measurement

glitches.
• Assume first that it’s something in your system.
• When all else fails, consider that the benchmark might

be at fault.
• Real anomalies are often likely to give

you real data.
• Cross reference results as much as possible.
• Compare two different benchmark results.
• Tweak variables to see if hypotheses are valid.

Measuring Computer Systems

Consumer Perspective (3)
• Synthesize your results to ensure a

coherent and believable picture.
• Which of your conclusions can be proven?
• Which are conjectures?

Measuring Computer Systems

Benchmark Designer
Perspective

• Preserve all data.
• Summaries are useful.
• Raw data must be available for more detailed analysis.

• Portability
• Be precise about what cross-platform conclusions you

can accurately draw.
• Know whether you are stating something about the

hardware, the operating system, the compiler, or an
application.

• Understand what you lose by portability (e.g., detailed
counter measurements).

Measuring Computer Systems

Designer Perspective (2)
• Pick a consistent methodology.

• Measurement.
• Reporting.
• Data collection.
• Timing.
• Benchmark structure.

• Isolate variables to the extent possible.
• Makes it easier to explain results.
• Encourages/enables testing of hypotheses.

• Know your audience
• Identify the target audience (e.g., researchers, end-

users, vendors).

Measuring Computer Systems

Designer Perspective (3)
• Articulate exactly what your results

mean.
• What is a SPECmark?
• How can someone use your results?
• How should (shouldn’t) they use your results?

• Tell the user how to interpret the results.
• Think about data presentation.
• Know what you are measuring (and

ensure that it’s what you intended to
measure).

Measuring Computer Systems

Designer Perspective (4)
• Show meaningful examples and

comparisons.
• Comparing Windows NT on the Pentium versus the

Pentium Pro will tell you something about hardware.
• Comparing Windows NT to Windows 3.1 on the

Pentium will tell you something about software.
• Comparing Windows NT on a Pentium to Solaris on a

SPARCstation doesn’t tell you much about anything.
• Use the smallest effective difference.

• Edward Tufte’s “The Visual Display of Quantitative
Information.”

Measuring Computer Systems

Lessons to Take Away
• Measurement is important; do it

carefully.
• Don’t be dazzled by bad numbers (even if

there are a lot of them).
• Understand what a number means before

you publish, quote, or reference it.
• Apply the principle of smallest effective

difference.
• Measurement is more than a marketing

ploy; it’s serious science, not an art.

