
11

Safe Kernel Extensions withoutSafe Kernel Extensions without
Run Time CheckingRun Time Checking

George C. Necula Peter LeeGeorge C. Necula Peter Lee
Carnegie Mellon UniversityCarnegie Mellon University

Carnegie
Mellon

The Problem: Safety in the presence of
untrusted code

! Examples: OS Extensions, Safe Mobile Code,
Programming Language Interoperation

! Previous: Hardware memory protection, Runtime
checking, Interpretation

! We want both safety and performance!

Code Consumer
Kernel
Host

CPU

Code Producer
User-Application
Untrusted Host

Code

33

Carnegie
Mellon

Proof-Carrying Code (PCC)

certification

proof
validation

untrusted
application code

native
code

safety
proof

code producer

code consumer

CPU

PCC binary

formal
safety policy

55

Carnegie
Mellon

Checking a Proof vs. Generating One
DefinitionDefinition: A maze is “: A maze is “safe”safe” if there is a path through it! if there is a path through it!

77

Carnegie
Mellon

Benefits of PCC

! Wide range of safety policies
"memory safety
• resource usage guarantees (CPU, locks, etc.)
• concurrency properties
"data abstraction boundaries

! Wide range of languages
"assembly languages
• high-level languages

! Simple, fast, easy-to-trust validation
! Tamper-proof

88

Carnegie
Mellon

Experimentation

! Goal:
• Test feasibility of PCC concept
• Measure costs (proof size and validation time)

! Choose simple but practical applications
#Network Packet Filters
• IP Checksum
• Extensions to the TIL run-time system for Standard ML

99

Carnegie
Mellon

Experimentation (2)

! Use DEC Alpha assembly language (hand-
optimized for speed)

! Network Packet Filters
• BPF safety policy: “The packet is read-only and the

scratch memory is read-write. No backward branches.
Only aligned memory accesses.”

1010

Carnegie
Mellon

PCC Implementation (1)

! Formalize the safety policy:
• Use first-order predicate logic extended with

can_rd(addr) and can_wr(addr)
• Kernel specifies safety preconditions

– Calling convention
– Guaranteed by the kernel to hold on entry

! " < = +

! " < = +

$

$

i i i i i
j j j j j
.(r mod) can_rd(r)
.(mod) can_wr(r)

1 0

2

0 8 0
0 16 8 0

1111

Carnegie
Mellon

PCC Implementation (2)

! Compute a safety predicate for the code
• Use Floyd-style verification conditions (VCgen)
• One pass through the code, for example:

– For each LD r,n[rb] add can_rd(rb+n)
– For each ST r,n[rb] add can_wr(rb+n)

! Prove the safety predicate
• Use a general purpose theorem prover

1212

Carnegie
Mellon

PCC Implementation (3)

! Formal proofs are trees:
• the leaves are axiom instances
• the internal nodes are inference rule instances
• at the root is the proved predicate
• Example:

1313

Carnegie
Mellon

PCC Implementation (4)

! Proof Representation: Edinburgh Logical
Framework (LF)

! Proofs encoded as LF expressions
! Proof Checking is LF type checking

• simple, fast and easy-to-trust (14 rules)
• 5 pages of C code
• independent of the safety policy or application
• based on well-established results from type-theory and

logic
! Large design space, not yet explored

1414

Carnegie
Mellon

Packet Filter Experiments

! 4 assembly language packet filters (hand-
optimized for speed):
1 Accepts IP packets (8 instr.)
2 Accepts IP packets for 128.2.206 (15 instr.)
3 IP or ARP between 128.2.206 and 128.2.209
4 TCP/IP packets for FTP (28 instr.)

! Compared with:
• Run-Time Checking: Software Fault Isolation
• Safe Language: Modula-3
• Interpretation: Berkeley Packet Filter

1515

Carnegie
Mellon

Performance Comparison

! Off-line packet trace on a DEC Alpha 175MHz
! PCC packet filters: fastest possible on the architecture
! The point: Safety without sacrificing performance!

0

0.5

1

1.5

2

1 2 3 4
Filter

La
te

nc
y

(u
s)

PCC
SFI
M3
BPF

1616

Carnegie
Mellon

Cost of PCC for Packet Filters

! Proofs are approx. 3 times larger than the code
! Validation time: 0.3-1.8ms

Packet Filter 1 2 3 4
Instructions 8 15 47 28
Proof Size(bytes) 160 225 532 420
Validation Time(us) 362 872 1769 1354

1717

Carnegie
Mellon

Validation Cost (Filter 3)

! Conclusion: One-time validation cost amortized
quickly

0
3
6
9

12
15

0 10 20 30 40 50
Thousands of packets

ms

PCC
SFI
M3
BPF

1818

Carnegie
Mellon

PCC for Memory Safety

! Continuum of choices between static checking and
run-time checking:

Run-Time
Checking

Static
Checking

Performance Penalty

Proof Complexity

SFI

! PCC can be also used where run-time
checking cannot (e.g., concurrency)

1919

Carnegie
Mellon

Practical Difficulties

! Proof generation
• Similar to program verification
• But:

– done off-line
– can use run-time checks to simplify the proofs

• In restricted cases it is feasible (even automatable)
! Proof-size explosion

• It is exponential in the worst case
• Not a problem in our experiments

2020

Carnegie
Mellon

Future Work

! Resource Usage Policies
• Locks, deadlock avoidance

! Certifying Compiler
• Avoids theorem proving
• Generates proof of type-safety for target code

completely automatically
• The most promising path towards large scale PCC

! More applications
• Smartcards
• Active Networks

2121

Carnegie
Mellon

Conclusion

! A very promising framework for ensuring safety
of untrusted code.

! Achieves safety without sacrificing performance
! Type-safety properties for assembly language
! Serious difficulties exist
! Need more experimentation

