Safe Kernel Extensions without
Run Time Checking

George C. Necula Peter Lee
Carnegie Mellon University

Carntgie
Mell

The Problem: Safety in the presence of
untrusted code

Code

Code Consumer
Kernel
Host

Code Producer
User-Application
Untrusted Host

1 Examples: OS Extensions, Safe Mobile Code,
Programming Language Interoperation

1 Previous: Hardware memory protection, Runtime
checking, Interpretation

1 We want both safety and performance!

Proof-Carrying Code (PCC) ﬁ

untrusted
application code

Y

code producer ‘ certification I

code consumer

native : safety

N 4 code pl‘oof

PCC binary =~

»/'/ rY
proof
validation

Y<

formal
safety policy

Checking a Proof vs. Generating One &

Definition: A maze is “safe” if there is a path through it!

___J:‘fJ_:_l_lllJl l_lll_ll__l__ L
1——% A T h AT Ly 2
o aeE S E_
Llﬁaga_\w;
TR b e
] | | | B _
T T S DS o
g_fﬂ_%émq s
1 I

A B U N r‘_

Benefits of PCC &

1 Wide range of safety policies
¢’ memory safety
* resource usage guarantees (CPU, locks, etc.)
° concurrency properties
¢/ data abstraction boundaries
1 Wide range of languages
v’ assembly languages
* high-level languages
1 Simple, fast, easy-to-trust validation

1 Tamper-proof

Experimentation =

1 Goal:
* Test feasibility of PCC concept
e Measure costs (proof size and validation time)

1 Choose simple but practical applications

> Network Packet Filters

e IP Checksum
e Extensions to the TIL run-time system for Standard ML

Experimentation (2) i

1 Use DEC Alpha assembly language (hand-
optimized for speed)

2 Network Packet Filters

* BPF safety policy: “The packet is read-only and the
scratch memory is read-write. No backward branches.
Only aligned memory accesses.”

PCC Implementation (1) &

1 Formalize the safety policy:

* Use first-order predicate logic extended with
can_rd(addr) and can_wr(addr)

* Kernel specifies safety preconditions
— Calling convention

— Guaranteed by the kernel to hold on entry

Viiz0nri<r,aimod8=0)= can_rd(r,+1i)

Vji(j=z0a j<16A jmod 8 =0) = can_wr(r,+ j)

10

PCC Implementation (2)

1 Compute a safety predicate for the code
* Use Floyd-style verification conditions (VCgen)
* One pass through the code, for example:
— For each LD r,n[r,] add can_rd(r,+n)
— For each ST rn[r,] add can_wr(r +n)
1 Prove the safety predicate

* Use a general purpose theorem prover

Carnkgie
Mell

11

PCC Implementation (3) &

1 Formal proofs are trees:
* the leaves are axiom instances
 the internal nodes are inference rule instances
e at the root 1s the proved predicate

e Example:

Mrer
Mrer Mrer t o mod 27 = o
Mre, : : sel(r, o PESB)F£O fh=rnpEoR
ro mod 2°% =g sel{cm, o) # 0 = wriro $: 8) sel(cm,) #£0
rdiro) m=roHESE wriro $ B) u
rdir, $ 8BS B) geli{bp,,bn B ES B) £ 0 = weley T E)

cdicy &8 S B) Alseliem, o HE SR £ 0= welrp BB A ...
Pre, = rdica FBSB) A (selibm,, b HBESBY £ 0= welrg BEN A ...
Yro.Yrm.Prer = odico 5SS B) A (selrm, o EESB) £ 0 =2 wriro BB A L.

Fro,

12

PCC Implementation (4) &

1 Proof Representation: Edinburgh Logical
Framework (LF)

1 Proofs encoded as LF expressions
1 Proof Checking 1s LF type checking

e simple, fast and easy-to-trust (14 rules)

* 5 pages of C code

* independent of the safety policy or application

* based on well-established results from type-theory and
logic

1 Large design space, not yet explored

13

Packet Filter Experiments

1 4 assembly language packet filters (hand-
optimized for speed):
I Accepts IP packets (8 instr.)
2 Accepts IP packets for 128.2.206 (15 instr.)
3 IP or ARP between 128.2.206 and 128.2.209

4 TCP/IP packets for FTP (28 instr.)
1 Compared with:
* Run-Time Checking: Software Fault Isolation

e Safe Language: Modula-3
 Interpretation: Berkeley Packet Filter

Carnkgie
Mell

14

Performance Comparison &

2 WPCC
515 I SFI
? 1 - B M3
Q

=05 - O BPF

0 _:J ml | o =i
1 p 3 4
Filter

1 Off-line packet trace on a DEC Alpha 175MHz
1 PCC packet filters: fastest possible on the architecture
1 The point: Safety without sacrificing performance!

15

Cost of PCC for Packet Filters &

1 Proofs are approx. 3 times larger than the code
1 Validation time: 0.3-1.8ms

Packet Filter 1 2 3 4
Instructions 8 15| 47 28
Proof Size(bytes) 160| 225| 532| 420
Validation Time(us)| 362 872|1769| 1354

16

Validation Cost (Filter 3) ‘

ms 15 T
12
9 / —~—PCC
.| SFI
‘/ —— M3
3 - BPF
0 L ; ; ; ;
0 10 20 30 40 50

Thousands of packets

0 Conclusion: One-time validation cost amortized
quickly

17

PCC for Memory Safety &

1 Continuum of choices between static checking and
run-time checking:

Performance Penalty

Checking Checking

Static » Run-Time

Proof Complexity T

SFI

1 PCC can be also used where run-time
checking cannot (e.g., concurrency)

18

Practical Difficulties

1 Proof generation
e Similar to program verification
* But:
— done off-line
— can use run-time checks to simplify the proofs

e In restricted cases it 1s feasible (even automatable)

1 Proof-size explosion
It 1s exponential in the worst case

* Not a problem in our experiments

Carnkgie
Mell

19

Future Work

1 Resource Usage Policies

* Locks, deadlock avoidance
1 Certitying Compiler

* Avoids theorem proving

* Generates proof of type-safety for target code
completely automatically

e The most promising path towards large scale PCC
1 More applications

e Smartcards

* Active Networks

Carnkgie
Mell

20

Conclusion j

1 A very promising framework for ensuring safety
of untrusted code.

1 Achieves safety without sacrificing performance
1 Type-safety properties for assembly language
1 Serious difficulties exist

1 Need more experimentation

21

