
CSE 60641: Operating Systems

•  Scheduler Activations: Effective Kernel Support

 for the User-Level Management of Parallelism.
 Thomas E. Anderson, Brian N. Bershad, Edward
 D. Lazowska, and Hank M. Levy, SOSP '91
–  What is this paper trying to achieve?

•  User level threads
•  Kernel level threads
•  Scheduler activation

Sep-16-08 CSE 60641: Operating Systems 1

User level threads

•  Excellent performance (no crossing user/kernel

 boundary)
–  No protection issues because all threads belong to the

 same process
•  Cost of generality: user threads can be tuned to a

 particular application
•  Problems:

–  blocking call, kernel thread allocated to the user thread
 cannot be reclaimed
•  Allocate more virtual processors (unfair)

–  Kernel might interfere with critical sections
–  Processors cannot be returned

9/16/08 CSE 60641: Operating Systems 2

Solution: Scheduler activation

•  A mechanism for kernel and user level to cooperate

–  Kernel makes an upcall with a scheduler activation
–  You can either keep the activation, or perform the task

 informed by the activation.
–  User level -> kernel is still system call

•  Number of scheduler activations = number of virtual
 processors assigned to a process
–  Application is free to implement any scheduling policy

 using the assigned activations
–  Kernel will notify user if any thread blocks

9/16/08 CSE 60641: Operating Systems 3

Kernel upcalls because of

•  Add this processor
•  Processor has been preempted

–  Return to the ready list of the user-level thread that was
 executing in the context of the preempted activation

•  Scheduler activation has blocked
–  Blocked scheduler is no longer using its processor

•  Scheduler activation has unblocked
–  Ready to the ready list the user level thread that was

 executing in the context of the blocked activation.
–  New activation includes processor context the newly

 unblocked one and the one that was preempted

9/16/08 CSE 60641: Operating Systems 4

From user space to kernel

•  Add more processors

•  Processor is idle

•  Together, they can allow the kernel to give and take
 away processors dynamically

9/16/08 CSE 60641: Operating Systems 5

•  User level priority scheduling:
–  Deschedule a lower priorty thread
–  If the lower priority thread is in critical section, don’t do it

•  Detected using application maintained flags

•  Performance good:
–  Upcall latency: 5x kernel threads

9/16/08 CSE 60641: Operating Systems 6

Lessons learnt

•  Can kernel/user partnership make sense for other

 things? If so, how general can they be?

9/16/08 CSE 60641: Operating Systems 7

