
CSE 60641: Operating Systems

•  Next topic: CPU (Process/threads/scheduling,

 synchronization and deadlocks)
–  Why threads are a bad idea (for most purposes). J

 Ousterhout - Keynote at the 1996 Usenix Annual
 Technical

–  Why Events Are A Bad Idea (for high-concurrency
 servers) Rob von Behren, Jeremy Condit and Eric
 Brewer, HotOS IX

–  Event-driven Programming is Not the Opposite of
 Threaded Programming, Atul Adya, Jon Howell, Marvin
 Theimer, William J. Bolosky, John R. Douceur. USENIX
 '02

Sep-9-08 CSE 60641: Operating Systems 1

What is the problem being addressed?

•  Programming for concurrency

–  Why do we worry about this?
•  Threads are a popular abstraction

–  Light weight (as compared to tasks)
–  They retain stack

•  Event based program
–  When a event happens, the system calls a event

 dispatcher which calls the appropriate service routine.
–  Easy to program
–  The service routine does not know where it came from (no

 stack). Hence the need to manually manage stacks

9/9/08 CSE 60641: Operating Systems 2

Ousterhout

•  Author of TCL programming language
•  Threads are too hard for most programmers. Even

 for experts, development is painful.
–  Synchronization, deadlocks
–  Hard to debug: data dependencies, timing dependencies
–  Break abstraction: cannot design modules independently
–  Callbacks don’t work with locks
–  Achieving good performance is hard

•  Simple locking yields low concurrency
•  Fine-grain locking increases complexity, reduces

 performance
–  Threads not well-supported (circa 1995)

9/9/08 CSE 60641: Operating Systems 3

Event-driven programming

•  One execution stream: no CPU concurrency
•  Long-running handlers make applications

 nonresponsive
–  Fork off sub-processes for long running things, use events

 to find out when done.
–  Break up handlers (event-driven I/O)

•  Can’t maintain local state across events (handler
 must return)
–  Manual stack maintenance

•  Stack is used to maintain local data, state and return
•  Events – all local state is lost after scheduling an event

9/9/08 CSE 60641: Operating Systems 4

Conclusions

•  Concurrency is fundamentally hard; avoid whenever

 possible (most of recent machines are multi-core)
•  Threads more powerful than events, but power is

 rarely needed
•  Threads much harder to program than events; for

 experts only
•  Use events as primary development tool (both GUIs

 and distributed systems)
•  Use threads only for performance-critical kernels

9/9/08 CSE 60641: Operating Systems 5

Adya et al.

•  Argue that things are little more complicated
•  Task management: preemptive, serial and

 cooperative (yields control at well defined points)
•  Stack management: manual, automatic

•  I/O management: synchronous, asynchronous
•  Conflict management:

–  Pessimistic – locks
–  Optimistic – use speculation; if conflict, roll back and retry

•  Data partitioning

9/9/08 CSE 60641: Operating Systems 6

•  Event-driven: cooperative task management and
 manual stack management

•  Threaded: preemptive and automatic stack mgmt
•  Sweet spot: cooperative task management,

 automatic stack management
•  Stack ripping: event driven code

–  Function scoping: two or more functions represent a single
 conceptual function
1.  Read network event, schedule disk read
2.  Process read event, schedule write event

–  Automatic variables: local (stack variables) need to be
 moved into heap to survive across yield points
9/9/08 CSE 60641: Operating Systems 7

•  Control structures: entry point must be a language
 function

•  Debugging stack: call stack must be manually
 recovered, manual optimization of tail calls

•  The authors show a hybrid approach: manual calling
 automatic, automatic calling manual

9/9/08 CSE 60641: Operating Systems 8

Brewer et al. – Events are a bad idea

•  Weaknesses of threads are artifacts of poor threads
•  Compiler support for thread systems
•  Applicable for high concurrency servers

•  Problems with threads:
–  Performance: Many attempts to use threads for high

 concurrency have not performed well
•  Poor implementation. O(n) components

–  Control flows: encourages programmers to think linearly
•  Robust systems need acknowledgments, even in events

9/9/08 CSE 60641: Operating Systems 9

–  Synchronization: mechanisms are too heavy-weight
•  Cooperative threads

–  State management: Thread stacks are an ineffective way
 to manage live state
•  Dynamic thread stack size management

–  Scheduling: Threads treat processors are virtual – runtime
 is too generic and prevents it from making optimal
 scheduling decisions. Events can perform shortest
 remaining completion time scheduling, favor certain
 request streams to maintain locality etc.
•  Duality argument

9/9/08 CSE 60641: Operating Systems 10

