
Dec-2-08 CSE 542: Operating Systems 1

Distributed systems
•  Time, clocks, and the ordering of events in a

distributed system Leslie Lamport.
Communications of the ACM, 21(7):558-565, July
1978
–  Formal description of distributed systems concepts

•  The ABCDs of Paxos, Butler W. Lampson, PODC
2001
–  Consensus among a group of unreliable processors

Partial ordering
•  Assume that the system is made of a number of

processes. Each process consists of a sequence of
events.

•  “happens before” relationship:
–  If a and b are events in the same process, a comes before

b, then a happens before b.
–  If a is the sending a message and b is the receipt of it,

then a happens before b.
–  If a happens before b and b happens before c, then a

happens before c
•  If a does not happen before b and b does not

happen before a, a and b are concurrent

Partial Ordering

•  p3 and q3 are concurrent.

Process P Process Q Process R
p4

p3

p2

p1

q7
q6

q5
q4

q3

q2

q1

r4

r3

r2

r1

Logical clocks
•  Clock is just a way of assigning a number to an

event, number is thought of the time at which the
event occurred.

•  Clock C for each process P is a function that assigns
a number Ci<a> to any event a.

•  Clock condition:
–  For any event a, b: if a happens before b, then C(a)<C(b)

•  Happens before condition holds if:
–  a and b are events in process P, and a comes before b,

then C(a) < C(b)
–  a is the sending of a message and b is the receipt then

C(a)<C(b)

Implementable clock condition
1.  Each process P, increments C between any two

successive events

2.  If event a is the sending of a message m by
process Pi, then the message m contains a
timestamp Tm=Ci(a). Upon receiving a message
m, process Pj sets Cj greater than or equal to its
present value and greater than Tm.

Total ordering of events
•  We can use a system of clocks satisfying the clock

condition to place a total ordering on the set of all
system events. We order events by the times at
which they occur. To break ties, we use any arbitrary
total ordering of the processes
–  If a is an event in Pi and b is an event in Pj, then a⇒b iff

•  Ci(a) < Cj(b) or
•  Ci(a) = Ci(b) and Pi < Pj

•  Total ordering depends on the clocks (C). Partial
ordering is absolute

Application
•  Algorithm for granting a resource which satisfies:

1.  A process which has been granted the resource must
release it before it can be granted to another process

2.  Different requests for the resource must be granted in the
order in which they are made

3.  If event process which is granted the resource eventually
releases it, then every request is eventually granted

Central server based approaches that use the time
received to grant resources does not work if two
request take different times to reach the service

Physical clocks
•  To synchronize clocks:

–  Sender sends message with time stamp
–  Receiver receives responses. The difference in expected

and unexpected delay is the clock drift.

•  They derive a bound on time taken to synchronize
clocks.

