
Rethink the Sync

Ed Nightingale
Kaushik Veeraraghavan
Peter Chen
Jason Flinn

University of Michigan

Rethink the Sync University of Michigan 2

Problem

  Asynchronous I/O is a poor abstraction for:
  Reliability
  Ordering
  Durability
  Ease of programming

  Synchronous I/O is superior but 100x slower
  Caller blocked until operation is complete

Rethink the Sync University of Michigan 3

Solution

  Synchronous I/O can be fast

  New model for synchronous I/O
  External synchrony
  Same guarantees as synchronous I/O
  Only 8% slower than asynchronous I/O

Rethink the Sync University of Michigan 4

When a sync() is really async
  On sync() data written only to volatile cache

  10x performance penalty and data NOT safe

Volatile
Cache Operating

System
Cylinders

Disk

  100x slower than asynchronous I/O if disable cache

Rethink the Sync University of Michigan 5

To whom are guarantees provided?
  Synchronous I/O definition:

  Caller blocked until operation completes

Disk Screen

App App

  Guarantee provided to application

App

Network

OS Kernel

Rethink the Sync University of Michigan 6

To whom are guarantees provided?

  Guarantee really provided to the user

OS Kernel

Disk Screen

App App App

Network

Rethink the Sync University of Michigan 7

Providing the user a guarantee

  User observes operation has completed
  User may examine screen, network, disk…

  Guarantee provided by synchronous I/O
  Data durable when operation observed to complete

  To observe output it must be externally visible
  Visible on external device

Rethink the Sync University of Michigan 8

Network

Why do applications block?

  Since application external we block on syscall

Internal

External

External

OS Kernel

Disk Screen

App App

  Application is internal therefore no need to block

App

Rethink the Sync University of Michigan 9

A new model of synchronous I/O

  Provide guarantee directly to user
  Rather than via application

  Called externally synchronous I/O
  Indistinguishable from traditional sync I/O
  Approaches speed of asynchronous I/O

Rethink the Sync University of Michigan 10

Example: Synchronous I/O

OS Kernel Disk Process

101 write(buf_1);

102 write(buf_2);

103 print(“work done”);

104 foo();

Application blocks
Application blocks

%work done
%

TEXT

%

Rethink the Sync University of Michigan 11

Observing synchronous I/O

101 write(buf_1);

102 write(buf_2);

103 print(“work done”);

104 foo();

  Sync I/O externalizes output based on causal ordering
  Enforces causal ordering by blocking an application

  Ext sync: Same causal ordering without blocking applications

Depends on 1st write

Depends on 1st & 2nd write

Rethink the Sync University of Michigan 12

Example: External synchrony

OS Kernel Disk Process

101 write(buf_1);

102 write(buf_2);

103 print(“work done”);

104 foo();

TEXT

%work done
%
%

Rethink the Sync University of Michigan 13

Tracking causal dependencies
  Applications may communicate via IPC

  Socket, pipe, fifo etc.

  Need to propagate dependencies through IPC

  We build upon Speculator [SOSP ’05]
  Track and propagate causal dependencies
  Buffer output to screen and network

Rethink the Sync University of Michigan 14

Tracking causal dependencies

Disk Process 1

101 write(file1);

102 do_something();

%hello
%
%

101 print (“hello”);

102 read(file1);

103 print(“world”);

Process 1 Process 2

Process 2

Commit
Dep 1

Process 1

OS Kernel

Process 2 TEXT TEXT world

Rethink the Sync University of Michigan 15

Output triggered commits

OS Kernel Disk Process

%work done
%

TEXT

%

  Maximize throughput until output buffered
  When output buffered, trigger commit

  Minimize latency only when important

Rethink the Sync University of Michigan 16

Evaluation

  Implemented ext sync file system Xsyncfs
  Based on the ext3 file system
  Use journaling to preserve order of writes
  Use write barriers to flush volatile cache

  Compare Xsyncfs to 3 other file systems
  Default asynchronous ext3
  Default synchronous ext3
  Synchronous ext3 with write barriers

Rethink the Sync University of Michigan 17

When is data safe?

File System
Configuration

Data durable
on write()

Data durable
on fsync()

Asynchronous No Not on
power failure

Synchronous Not on
power failure

Not on
power failure

Synchronous
w/ write barriers Yes Yes

External synchrony Yes Yes

Rethink the Sync University of Michigan 18

Postmark benchmark

  Xsyncfs within 7% of ext3 mounted asynchronously

Rethink the Sync University of Michigan 19

The MySQL benchmark

  Xsyncfs can group commit from a single client

Rethink the Sync University of Michigan 20

Specweb99 throughput

  Xsyncfs within 8% of ext3 mounted asynchronously

Rethink the Sync University of Michigan 21

Specweb99 latency

Request size ext3-async xsyncfs

0-1 KB 0.064 seconds 0.097 seconds

1-10 KB 0.150 second 0.180 seconds

10-100 KB 1.084 seconds 1.094 seconds

100-1000 KB 10.253 seconds 10.072 seconds

  Xsyncfs adds no more than 33 ms of delay

Rethink the Sync University of Michigan 22

Conclusion

  Synchronous I/O can be fast

  External synchrony performs with 8% of async

  Questions?

