
Nov-11-08 CSE 542: Operating Systems 1

File system trace papers
•  The Design and Implementation of a Log-

Structured File System. M. Rosenblum, and J.K.
Ousterhout. ACM TOCS. Vol. 10, No. 1 (Feb
1992), pp. 26-52

Nov-11-08 CSE 542: Operating Systems 2

Log structured file system
•  Problem being addressed:

–  CPU is fast, memory is plentiful, disk seek slow
•  memory can catch most of the (repeated) reads

–  Small file writes suffer
•  Writes cannot be buffered and delayed indefinitely

because of data safety
–  Writing a small file can take five disk operations, read

data/index for directory entry and read/write of inode entry
(update meta information such are last modified) before
writing actual data = 5% utilization

–  Meta data updates are synchronous to ensure consistency
on crash

–  Crash recover is linear because we have to go through all
entries to ensure consistency (fsck)

Nov-11-08 CSE 542: Operating Systems 3

lfs
•  You collect all writes and write it all at once to disk,

paying for a single seek
•  Another approach is for file systems to maintain a

separate log and data area: all updates are written
into the log and are eventually moved into the non-
log areas. This paper talks about a system that only
contains logs; there are no “other” areas

•  They show that for small writes, they are significantly
better, for other cases they are similar to ffs

Disk layout
•  Super block contains segment information.

Segments are large collection of blocks – amortize
the seek cost by transfer large amounts of data

•  Checkpoint region: inode maps are kept in memory
for performance and periodically flushed to the
checkpoint log

•  Segments: version, offset of each block
•  Log: data block locations
•  Inode map: inode locations, inode versions
•  Segment usage table: bytes free, write times

11/11/08 CSE 60641: Operating Systems 4

Locating data for a file
•  Inode map gives you inode, which give you data

•  Checkpoint: flush everything to disk (data blocks,
indirect blocks, inodes, inode map table, segment
usage table)

•  Current time, pointer to last written segment
•  Two check point regions to protect against crashes,

use latest checkpoint for recovery (write timestamp
last)

•  How often should you checkpoint: LFS does every
30 seconds – research topic

11/11/08 CSE 60641: Operating Systems 5

Crash recovery
•  On crash, need inode map and segment usage table
•  Read latest version from checkpoints
•  Roll forward to get data written between checkpoints

–  If we find data blocks that belong to a inode, use them
–  Otherwise, file blocks belong to an incomplete write

•  Use directory log to recover directory operations (file
creates) except when no inode is found for a
directory create

11/11/08 CSE 60641: Operating Systems 6

Free space management
•  Fragmentation is a problem

–  Solution 1: Threading on a segment level avoiding useful
data

–  Solution 2: Compact segments using a periodic cleaner

•  LFS uses both
•  Cleaner:

–  Segment summary tells what files block belong to
–  Check file inode blocks to see if data block is still pointed
–  Inode version numbers can help when inode is recycled

•  How often to run cleaner
–  LFS prefers bimodal distribution: empty or full segments

11/11/08 CSE 60641: Operating Systems 7

Anamolies
•  Hot and cold performs worse

–  Cold segments linger
–  Hot segments frequently cleaned
–  Solution: to clean segment, 1 seg read + write of live data
–  Last segment write in segment table

•  LFS is worse than FFS for random writes and
sequential reads
–  Real world is better because large files are written and

deleted all at once and many files are never rewritten

11/11/08 CSE 60641: Operating Systems 8

Current technology
•  Log meta data
•  Is memory large compare to disk size in modern

computers?

11/11/08 CSE 60641: Operating Systems 9

