
Nov-6-08 CSE 542: Operating Systems 2

File system trace papers

•  A Fast File System For UNIX. M.K. McKusick,

W.N. Joy, S.J. Leffler, and R.S. Fabry. ACM
TOCS. Vol. 2, No. 3 (August 1984), pp. 181-197.

Disks when FFS was designed

•  Slow (3600 RPM)
•  Dumb (no disk caching, requests are issued

sequentially – by the time that request was made to
the next sector, the disk could’ve rotated away)

•  CPU performs many block allocation and scheduling
decisions + CPU was slow and was saturating

11/6/08 CSE 60641: Operating Systems 3

Old UNIX file system

•  Disks split into partitions

–  Superblock (file system parameters)
–  Inodes
–  Files and directory blocks
–  512 byte data blocks (disk sector size)

•  After a while, allocation becomes random
•  Inodes and data blocks randomly distributed throughout

the disk
–  File names were small, no locking, no symbolic links etc.

11/6/08 CSE 60641: Operating Systems 4

FFS

•  Block sizes are at least 4KB – different file systems

on the same disk (but on different partitions) can
have different block sizes
–  Use fragments to achieve smaller sizes
–  Are these still relevant? What problems are fragments

solving? What is the cost?
•  Use cylinder groups to distribute inodes around the

disk. Keep related items on the same cylinder group
–  Space inefficient – reserve a certain amount of disk (10%)
–  Only root can use the last 10%. Performance severely

degrades because FFS essentially becomes random
allocation when there is no space

11/6/08 CSE 60641: Operating Systems 5

FFS

•  Superblocks are replicated at predictable but

different locations on different cylinder groups for
better error recovery

•  Cylinder groups: Keep related inodes and data
together (directory, files).
–  Assign new directories to different cylinder groups.

Challenge is to choose good cylinder groups because file
sizes and number of files grow in the future while cylinder
group allocation happens when a new directory is created.

–  Back then, since the CPU was involved with disk
scheduling, free blocks had to be offset by certain number
of blocks (rotational latency and issue latency)
•  Are they still a concern when disk controller is involved

11/6/08 CSE 60641: Operating Systems 6

Fragments

•  Allocate new fragments at the end of file.

–  Fragments can belong to multiple files
–  As files grow, we would like to coalesce fragments of the

same file into a single block
–  Challenge is to balance space usage with performance
–  Applications can help by finding out the block size and

writing in block size worth of data
•  Easy if your program used stdio library
•  Cp program and other system utilities do this
•  Question: Are fragments still relevant? What is a good

block size for modern files?

11/6/08 CSE 60641: Operating Systems 7

Block allocation

•  Optimize for sequential access (why?)

–  Use rotational close blocks in the same cylinder
–  If not, use blocks from the same cylinder group
–  If not, use a quadratic hashing mechanisms (rare
–  Otherwise, random allocation

•  What happens if one file in a directory uses all the
blocks from a cylinder group. Every other file will
have far pointers for data blocks.
–  Solution: Break large files across multiple cylinder groups.

UNIX inode, good point to break are indirect pointers

11/6/08 CSE 60641: Operating Systems 8

